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Unix is not so much an operating system as an oral history.
-- Neal Stephenson

There is avast difference between knowledge and expertise. Knowledge lets you deduce the right
thing to do; expertise makes the right thing areflex, hardly requiring conscious thought at all.

This book has alot of knowledge init, but it is mainly about expertise. It is going to try to teach you
the things about Unix development that Unix experts know, but aren't aware that they know. Itis
therefore less about technicalia and more about shared culture than most Unix books — both explicit
and implicit culture, both conscious and unconscious traditions. It is not a‘how-to’ book, it isa‘why-
to’ book.

The why-to has great practical importance, because far too much software is poorly designed. Much
of it suffers from bloat, is exceedingly hard to maintain, and is too difficult to port to new platforms
or extend in ways the original programmers didn't anticipate. These problems are symptoms of bad
design. We hope that readers of this book will learn something of what Unix has to teach about good
design.

Thisbook is divided into four parts. Context, Design, Tools, and Community. The first part (Context)
Is philosophy and history, to help provide foundation and motivation for what follows. The second
part (Design) unfolds the principles of the Unix philosophy into more specific advice about design
and implementation. The third part (Tools) focuses on the software Unix provides for helping you
solve problems. The fourth part (Community) is about the human-to-human transactions and
agreements that make the Unix culture so effective at what it does.

Because thisis abook about shared culture, | never planned to write it alone. Y ou will notice that the
text includes guest appearances by prominent Unix developers, the shapers of the Unix tradition. The
book went through an extended public review process during which | invited these luminaries to



comment on and argue with the text. Rather than submerging the results of that review processin the
final version, these guests were encouraged to speak with their own voices, amplifying and
developing and even disagreeing with the main line of the text.

In this book, when | use the editorial *we' it is not to pretend omniscience but to reflect the fact that it
attempts to articul ate the expertise of an entire community.

Because this book is aimed at transmitting culture, it includes much more in the way of history and
folklore and asides than is normal for atechnical book. Enjoy; these things, too, are part of your
education as a Unix programmer. No single one of the historical detailsis vital, but the gestalt of
them all isimportant. We think it makes a more interesting story this way. More importantly,
understanding where Unix came from and how it got the way it iswill help you develop an intuitive
feel for the Unix style.

For the same reason, we refuse to write asif history isover. You will find an unusually large number
of references to the time of writing in this book. We do not wish to pretend that current practice
reflects some sort of timeless and perfectly logical outcome of preordained destiny. References to
time of writing are meant as an alert to the reader two or three or five years hence that the associated
statements of fact may have become dated and should be double-checked.

Other things this book is not is neither a C tutorial, nor a guide to the Unix commands and API. It is
not areference for sed or yacc or Perl or Python. It's not a network programming primer, nor an
exhaustive guide to the mysteries of X. It's not atour of Unix'sinternals and architecture, either.
Other books cover these specifics better, and this book points you at them as appropriate.

Beyond all these technical specifics, the Unix culture has an unwritten engineering tradition that has

developed over literally millions of man-yeard?] of skilled effort. This book is written in the belief
that understanding that tradition, and adding its design patterns to your toolkit, will help you become
a better programmer and designer.

Cultures consist of people, and the traditional way to learn Unix culture is from other people and
through the folklore, by osmosis. This book is not a substitute for person-to-person acculturation, but
it can help accelerate the process by allowing you to tap the experience of others.

[11 The three and a half decades between 1969 and 2003 is along time. Going by the historical trend
curve in number of Unix sites during that period, probably somewhere upwards of fifty million man-
years have been plowed into Unix development worldwide.
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Who Should Read This Book

Y ou should read this book if you are an experienced Unix programmer who is often in the position of
either educating novice programmers or debating partisans of other operating systems, and you find it
hard to articulate the benefits of the Unix approach.

Y ou should read this book if you are a C, C++, or Java programmer with experience on other
operating systems and you are about to start a Unix-based project.

Y ou should read this book if you are a Unix user with novice-level up to middle-level skillsin the
operating system, but little devel opment experience, and want to learn how to design software
effectively under Unix.

Y ou should read this book if you are a non-Unix programmer who has figured out that the Unix
tradition might have something to teach you. We believe you're right, and that the Unix philosophy
can be exported to other operating systems. So we will pay more attention to non-Unix environments
(especially Microsoft operating systems) than is usual in a Unix book; and when tools and case
studies are portable, we say so.

Y ou should read this book if you are an application architect considering platforms or
implementation strategies for amajor general-market or vertical application. It will help you
understand the strengths of Unix as a development platform, and of the Unix tradition of open source
as a development method.

Y ou should not read this book if what you are looking for is the details of C coding or how to use the
Unix kernel API. There are many good books on these topics; Advanced Programming in the Unix
Environment [Stevens92] is classic among explorations of the Unix API, and The Practice of

Programming [Kernighan-Pike99] is recommended reading for all C programmers (indeed for all
programmers in any language).
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How to Use This Book

This book is both practical and philosophical. Some parts are aphoristic and general, others will
examine specific case studies in Unix development. We will precede or follow general principles and
aphorisms with examples that illustrate them: examples drawn not from toy demonstration programs
but rather from real working code that isin use every day.

We have deliberately avoided filling the book with lots of code or specification-file examples, even
though in many places this might have made it easier to write (and in some places perhaps easier to
read!). Most books about programming give too many low-level details and examples, but fail at
giving the reader a high-level feel for what isreally going on. In this book, we prefer to err in the
opposite direction.

Therefore, while you will often be invited to read code and specification files, relatively few are
actually included in the book. Instead, we point you at examples on the Web.

Absorbing these examples will help solidify the principles you learn into semi-instinctive working
knowledge. Ideally, you should read this book near the console of arunning Unix system, with a Web
browser handy. Any Unix will do, but the software case studies are more likely to be preinstalled and
immediately available for inspection on a Linux system. The pointersin the book are invitations to
browse and experiment. Introduction of these pointersis paced so that wandering off to explore for a
while won't break up exposition that has to be continuous.

Note: While we have made every effort to cite URL s that should remain stable and usable, thereisno
way we can guarantee this. If you find that a cited link has gone stale, use common sense and do a
phrase search with your favorite Web search engine. Where possible we suggest ways to do this near
the URLs we cite.

Most abbreviations used in this book are expanded at first use. For convenience, we have also
provided a glossary in an appendix.

References are usually by author name. Numbered footnotes are for URL s that would intrude on the
text or that we suspect might be perishable; also for asides, war stories, and jokes.[2l

To make this book more accessible to less technical readers, we invited some non-programmers to
read it and identify terms that seemed both obscure and necessary to the flow of exposition. We also
use footnotes for definitions of elementary terms that an experienced programmer is unlikely to need.




[4 This particular footnote is dedicated to Terry Pratchett, whose use of footnotesis quite...inspiring.
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Some famous papers and a few books by Unix's early developers have mined thisterritory before.
Kernighan and Pike's The Unix Programming Environment [Kernighan-Pike84] stands out among
these and isrightly considered a classic. But today it showsits age a bit; it doesn't cover the Internet,
and the World Wide Web or the new wave of interpreted languages like Perl, Tcl, and Python.

About halfway into the composition of this book, we learned of Mike Gancarz's The Unix Philosophy
[Gancarz]. This book is excellent within its range, but did not attempt to cover the full spectrum of
topics we felt needed to be addressed. Nevertheless we are grateful to the author for the reminder that
the very simplest Unix design patterns have been the most persistent and successful ones.

The Pragmatic Programmer [Hunt-Thomas] is awitty and wise disquisition on good design practice
pitched at adlightly different level of the software-design craft (more about coding, less about higher-
level partitioning of problems) than this book. The authors' philosophy is an outgrowth of Unix
experience, and it is an excellent complement to this book.

The Practice of Programming [Kernighan-Pike99] covers some of the same ground as The Pragmatic
Programmer from a position deep within the Unix tradition.

Finally (and with admitted intent to provoke) we recommend Zen Flesh, Zen Bones [ Reps-Senzaki],

an important collection of Zen Buddhist primary sources. Referencesto Zen are scattered throughout
this book. They are included because Zen provides a vocabulary for addressing some ideas that turn
out to be very important for software design but are otherwise very difficult to hold in the mind.
Readers with religious attachments are invited to consider Zen not as areligion but as a therapeutic
form of mental discipline— which, in its purest non-theistic forms, is exactly what Zenis.
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Conventions Used in This Book

The term “UNIX” istechnically and legally atrademark of The Open Group, and should formally be
used only for operating systems which are certified to have passed The Open Group's elaborate
standards-conformance tests. In this book we use “Unix” in the looser sense widely current among
programmers, to refer to any operating system (whether formally Unix-branded or not) that is either
genetically descended from Bell Labs's ancestral Unix code or written in close imitation of its
descendants. In particular, Linux (from which we draw most of our examples) isaUnix under this
definition.

This book employs the Unix manual page convention of tagging Unix facilities with afollowing
manual section in parentheses, usually on first introduction when we want to emphasize that thisisa
Unix command. Thus, for example, read “munger(1)” as “the ‘munger’ program, which will be
documented in section 1 (user tools) of the Unix manual pages, if it's present on your system”.
Section 2 is C system calls, section 3is C library calls, section 5 isfile formats and protocols, section
8 is system administration tools. Other sections vary among Unixes but are not cited in this book. For
more, type man 1 man at your Unix shell prompt (older System V Unixes may require man -s 1
man).

Sometimes we mention a Unix application (such as Emacs), without a manual-section suffix and
capitalized. Thisis aclue that the name actually represents a well-established family of Unix
programs with essentially the same function, and we are discussing generic properties of all of them.
Emacs, for example, includes xemacs.

At various points later in this book we refer to ‘old school’ and ‘new school’ methods. Aswith rap
music, new-school starts about 1990. In this context, it's associated with the rise of scripting
languages, GUI's, open-source Unixes, and the Web. Old-school refers to the pre-1990 (and especially
pre-1985) world of expensive (shared) computers, proprietary Unixes, scripting in shell, and C
everywhere. This difference is worth pointing out because cheaper and |ess memory-constrained
machines have wrought some significant changes on the Unix programming style.
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Our Case Studies

A lot of books on programming rely on toy examples constructed specifically to prove apoint. This
one won't. Our case studies will be real, pre-existing pieces of software that are in production use
every day. Here are some of the major ones:

cdrtool g/xcdroast

These two separate projects are usually used together. The cdrtools package is a set of CLI
tools for writing CD-ROMs; Web search for “cdrtools’. The xcdroast application is a GUI
front end for cdrtools; see the xcdroast project site.

fetchmail

The fetchmail program retrieves mail from remote-mail servers using the POP3 or IMAP post-
office protocols. See the fetchmail home page (or search for “fetchmail” on the Web).

GIMP

The GIMP (GNU Image Manipulation Program) is a full-featured paint, draw, and image-
mani pulation program that can edit a huge variety of graphical formats in sophisticated ways.
Sources are available from the GIMP home page (or search for "GIMP" on the Web).

mutt

The mutt mail user agent is the current best-of-breed among text-based Unix electronic mail
agents, with notably good support for MIME (Multipurpose Internet Mail Extensions) and the
use of privacy aids such as PGP (Pretty Good Privacy) and GPG (GNU Privacy Guard).
Source code and executable binaries are available at the Mutt project site.

xmlto

The xmlto command renders DocBook and other XML documents in various output formats,
including HTML and text and PostScript. For sources and documentation, see the xmlto

project site.

To minimize the amount of code the user needs to read to understand the examples, we have tried to
choose case studies that can be used more than once, ideally to illustrate several different design
principles and practices. For this same reason, many of the examples are from my projects. No claim
that these are the best possible onesisimplied, merely that | find them sufficiently familiar to be
useful for multiple expository purposes.
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Author's Acknowledgements
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31 An appreciation of Alexander's work, with links to on-line versions of significant portions, may be
found at Some Notes on Christopher Alexander.
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The Unix Philosophy in One Lesson
Applying the Unix Philosophy
Attitude Matters Too

Those who do not understand Unix are condemned to reinvent it, poorly.

-- Henry Spencer Usenet signature, November 1987
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Culture? What Culture?

Thisisabook about Unix programming, but in it we're going to toss around the words * culture’, *art’,
and ‘philosophy’ alot. If you are not a programmer, or you are a programmer who has had little
contact with the Unix world, this may seem strange. But Unix has a culture; it has adistinctive art of
programming; and it carries with it a powerful design philosophy. Understanding these traditions will
help you build better software, even if you're developing for a non-Unix platform.

Every branch of engineering and design has technical cultures. In most kinds of engineering, the
unwritten traditions of the field are parts of aworking practitioner's education as important as (and, as
experience grows, often more important than) the official handbooks and textbooks. Senior engineers
develop huge bodies of implicit knowledge, which they passto their juniors by (as Zen Buddhists put
it) “aspecia transmission, outside the scriptures”.

Software engineering is generally an exception to this rule; technology has changed so rapidly,
software environments have come and gone so quickly, that technical cultures have been weak and
ephemeral. There are, however, exceptionsto this exception. A very few software technologies have
proved durable enough to evolve strong technical cultures, distinctive arts, and an associated design
philosophy transmitted across generations of engineers.

The Unix culture is one of these. The Internet culture is another — or, in the twenty-first century,
arguably the same one. The two have grown increasingly difficult to separate since the early 1980s,
and in this book we won't try particularly hard.
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The Durability of Unix

Unix was born in 1969 and has been in continuous production use ever since. That's several geologic
eras by computer-industry standards — older than the PC or workstations or microprocessors or even
video display terminals, and contemporaneous with the first semiconductor memories. Of all
production timesharing systems today, only IBM's VM/CMS can claim to have existed longer, and
Unix machines have provided hundreds of thousands of times more service hours; indeed, Unix has
probably supported more computing than all other timesharing systems put together.

Unix has found use on awider variety of machines than any other operating system can claim. From

supercomputers to handhelds and embedded networking hardware, through workstations and servers
and PCs and minicomputers, Unix has probably seen more architectures and more odd hardware than
any three other operating systems combined.

Unix has supported a mind-bogglingly wide spectrum of uses. No other operating system has shone
simultaneously as a research vehicle, afriendly host for technical custom applications, a platform for
commercial-off-the-shelf business software, and a vital component technology of the Internet.

Confident predictions that Unix would wither away, or be crowded out by other operating systems,
have been made yearly sinceitsinfancy. And yet Unix, in its present-day avatars as Linux and BSD
and Solaris and MacOS X and half a dozen other variants, seems stronger than ever today.

Robert Metcalf [the inventor of Ethernet] says that if something comes along to
replace Ethernet, it will be called “Ethernet”, so therefore Ethernet will never die.

4 Unix has already undergone several such transformations.
-- Ken Thompson

At least one of Unix's central technologies — the C language — has been widely naturalized
elsawhere. Indeed it is now hard to imagine doing software engineering without C as a ubiquitous
common language of systems programming. Unix aso introduced both the now-ubiquitous tree-
shaped file namespace with directory nodes and the pipeline for connecting programs.

Unix's durability and adaptability have been nothing short of astonishing. Other technologies have
come and gone like mayflies. Machines have increased a thousandfold in power, languages have
mutated, industry practice has gone through multiple revolutions — and Unix hangs in there, still
producing, still paying the bills, and still commanding loyalty from many of the best and brightest
software technol ogists on the planet.

One of the many consequences of the exponential power-versus-time curve in computing, and the
corresponding pace of software development, is that 50% of what one knows becomes obsol ete over
every 18 months. Unix does not abolish this phenomenon, but does do a good job of containing it.



There's abedrock of unchanging basics — languages, system calls, and tool invocations — that one
can actually keep using for years, even decades. Elsewhere it isimpossible to predict what will be
stable; even entire operating systems cycle out of use. Under Unix, thereisafairly sharp distinction
between transient knowledge and lasting knowledge, and one can know ahead of time (with about
90% certainty) which category something islikely to fall in when one learns it. Thus the loyalty Unix
commands.

Much of Unix's stability and success has to be attributed to its inherent strengths, to design decisions
Ken Thompson, Dennis Ritchie, Brian Kernighan, Doug Mcllroy, Rob Pike and other early Unix
developers made back at the beginning; decisions that have been proven sound over and over. But
just as much is due to the design philosophy, art of programming, and technical culture that grew up
around Unix in the early days. Thistradition has continuously and successfully propagated itself in
symbiosis with Unix ever since.

[ 1n fact, Ethernet has already been replaced by a different technology with the same name — twice.
Once when coax was replaced with twisted pair, and a second time when gigabit Ethernet came in.
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The Case against Learning Unix Culture

Unix's durability and its technical culture are certainly of interest to people who aready like Unix,
and perhaps to historians of technology. But Unix's original application as a general-purpose
timesharing system for mid-sized and larger computersis rapidly receding into the mists of history,
killed off by personal workstations. And there is certainly room for doubt that it will ever achieve
success in the mainstream business-desktop market now dominated by Microsoft.

Outsiders have frequently dismissed Unix as an academic toy or a hacker's sandbox. One well-known
polemic, the Unix Hater's Handbook [ Garfinkel], follows an antagonistic line nearly as old as Unix
itself in writing its devotees off as a cult religion of freaks and losers. Certainly the colossal and
repeated blunders of AT& T, Sun, Novell, and other commercial vendors and standards consortiain
mispositioning and mismarketing Unix have become legendary.

Even from within the Unix world, Unix has seemed to be teetering on the brink of universality for so
long as to raise the suspicion that it will never actually get there. A skeptical outside observer's
conclusion might be that Unix is too useful to die but too awkward to break out of the back room; a
perpetual niche operating system.

What confounds the skeptics case is, more than anything else, the rise of Linux and other open-
source Unixes (such as the modern BSD variants). Unix's culture proved too vital to be smothered
even by a decade of vendor mismanagement. Today the Unix community itself has taken control of
the technology and marketing, and is rapidly and visibly solving Unix's problems (in ways welll
examine in more detail in Chapter 20).
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What Unix Gets Wrong

For adesign that dates from 1969, it is remarkably difficult to identify design choicesin Unix that are
unequivocally wrong. There are several popular candidates, but each is still a subject of spirited
debate not merely among Unix fans but across the wider community of people who think about and
design operating systems.

Unix files have no structure above byte level. File deletion isirrevocable. The Unix security model is
arguably too primitive. Job control is botched. There are too many different kinds of names for
things. Having afile system at all may have been the wrong choice. We will discuss these technical
issues in Chapter 20.

But perhaps the most enduring objections to Unix are consequences of afeature of its philosophy first
made explicit by the designers of the X windowing system. X strivesto provide “mechanism, not
policy”, supporting an extremely general set of graphics operations and deferring decisions about
toolkits and interface look-and-feel (the policy) up to application level. Unix's other system-level
services display similar tendencies; final choices about behavior are pushed as far toward the user as
possible. Unix users can choose among multiple shells. Unix programs normally provide many
behavior options and sport elaborate preference facilities.

This tendency reflects Unix's heritage as an operating system designed primarily for technical users,
and a consequent belief that users know better than operating-system designers what their own needs
are.

This tenet was firmly established at Bell Labs by Dick Hammingll who insisted
in the 1950s when computers were rare and expensive, that open-shop
computing, where customers wrote their own programs, was imperative, because
“it is better to solve the right problem the wrong way than the wrong problem the
right way”.

-- Doug Mcllroy

But the cost of the mechanism-not-policy approach is that when the user can set policy, the user must
set policy. Nontechnical end-users frequently find Unix's profusion of options and interface styles
overwhelming and retreat to systemsthat at |east pretend to offer them simplicity.

In the short term, Unix's laissez-faire approach may lose it a good many nontechnical users. In the
long term, however, it may turn out that this ‘mistake’ confers a critical advantage — because policy
tends to have a short lifetime, mechanism along one. Today's fashion in interface |look-and-feel too
often becomes tomorrow's evolutionary dead end (as people using obsolete X toolkits will tell you
with some feeling!). So the flip side of the flip side is that the “ mechanism, not policy” philosophy
may enable Unix to renew its relevance long after competitors more tied to one set of policy or



interface choices have faded from view.[9

[®1 Y es, the Hamming of * Hamming distance’ and * Hamming code'.

61 Jim Gettys, one of the architects of X (and a contributor to this book), has meditated in depth on
how X's laissez-faire style might be productively carried forward in The Two-Edged Sword [Gettys].

This essay iswell worth reading, both for its specific proposals and for its expression of the Unix
mindset.
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What Unix Gets Right

The explosive recent growth of Linux, and the increasing importance of the Internet, give us good
reasons to suppose that the skeptics case iswrong. But even supposing the skeptical assessment is
true, Unix culture is worth learning because there are some things that Unix and its surrounding
culture clearly do better than any competitors.

Open-Source Software

Though the term “open source” and the Open Source Definition were not invented until 1998, peer-
review-intensive development of freely shared source code was a key feature of the Unix culture
from its beginnings.

For itsfirst ten years AT& T's original Unix, and its primary variant Berkeley Unix, were normally
distributed with source code. This enabled most of the other good things that follow here.

Cross-Platform Portability and Open Standards

Unix is still the only operating system that can present a consistent, documented application
programming interface (API) across a heterogeneous mix of computers, vendors, and special-purpose
hardware. It isthe only operating system that can scale from embedded chips and handhelds, up
through desktop machines, through servers, and all the way to special-purpose number-crunching
behemoths and database back ends.

The Unix API isthe closest thing to a hardware-independent standard for writing truly portable
software that exists. It is no accident that what the |EEE originally called the Portable Operating
System Sandard quickly got a suffix added to its acronym and became POSIX. A Unix-equivalent
API was the only credible model for such a standard.

Binary-only applications for other operating systems die with their birth environments, but Unix
sources are forever. Forever, at least, given a Unix technical culture that polishes and maintains them
across decades.

The Internet and the World Wide Web

The Defense Department's contract for the first production TCP/IP stack went to a Unix devel opment
group because the Unix in question was largely open source. Besides TCP/IP, Unix has become the
one indispensable core technology of the Internet Service Provider industry. Ever since the demise of
the TOPS family of operating systems in the mid-1980s, most Internet server machines (and
effectively all above the PC level) haverelied on Unix.



Not even Microsoft's awesome marketing clout has been able to dent Unix'slock on the Internet.
While the TCP/IP standards (on which the Internet is based) evolved under TOPS-10 and are
theoretically separable from Unix, attempts to make them work on other operating systems have been
bedeviled by incompatibilities, instabilities, and bugs. The theory and specifications are available to
anyone, but the engineering tradition to make them into a solid and working reality exists only in the

Unix world.[]]

The Internet technical culture and the Unix culture began to merge in the early 1980s, and are now
inseparably symbiotic. The design of the World Wide Web, the modern face of the Internet, owes as
much to Unix asit does to the ancestral ARPANET. In particular, the concept of the Uniform
Resource Locator (URL) so central to the Web is a generalization of the Unix idea of one uniform
file namespace everywhere. To function effectively as an Internet expert, an understanding of Unix
and its culture are indispensabl e.

The Open-Source Community

The community that originally formed around the early Unix source distributions never went away —
after the great Internet explosion of the early 1990s, it recruited an entire new generation of eager
hackers on home machines.

Today, that community is a powerful support group for all kinds of software development. High-
guality open-source development tools abound in the Unix world (we'll examine many in this book).
Open-source Unix applications are usually equal to, and are often superior to, their proprietary
equivalents [Fuzz]. Entire Unix operating systems, with complete toolkits and basic applications
suites, are available for free over the Internet. Why code from scratch when you can adapt, reuse,
recycle, and save yourself 90% of the work?

Thistradition of code-sharing depends heavily on hard-won expertise about how to make programs
cooperative and reusable. And not by abstract theory, but through alot of engineering practice —
unobvious design rules that allow programs to function not just as isolated one-shot solutions but as
synergistic parts of atoolkit. A major purpose of this book isto elucidate those rules.

Today, a burgeoning open-source movement is bringing new vitality, new technical approaches, and
an entire generation of bright young programmers into the Unix tradition. Open-source projects
including the Linux operating system and symbionts such as Apache and Mozilla have brought the
Unix tradition an unprecedented level of mainstream visibility and success. The open-source
movement seems on the verge of winning its bid to define the computing infrastructure of tomorrow
— and the core of that infrastructure will be Unix machines running on the Internet.

Flexibility All the Way Down

Many operating systems touted as more ‘modern’ or ‘user friendly’ than Unix achieve their surface
glossiness by locking users and developers into one interface policy, and offer an application-
programming interface that for all its elaborateness is rather narrow and rigid. On such systems, tasks



the designers have anticipated are very easy — but tasks they have not anticipated are often
Impossible or at best extremely painful.

Unix, on the other hand, has flexibility in depth. The many ways Unix provides to glue together
programs mean that components of its basic toolkit can be combined to produce useful effects that
the designers of the individual toolkit parts never anticipated.

Unix's support of multiple styles of program interface (often seen as a weakness because it increases
the perceived complexity of the system to end users) also contributes to flexibility; no program that
wants to be a simple piece of data plumbing is forced to carry the complexity overhead of an
elaborate GUI.

Unix tradition lays heavy emphasis on keeping programming interfaces relatively small, clean, and
orthogonal — another trait that produces flexibility in depth. Throughout a Unix system, easy things
are easy and hard things are at least possible.

Unix Is Fun to Hack

People who pontificate about Unix's technical superiority often don't mention what may ultimately be
its most important strength, the one that underlies al its successes. Unix is fun to hack.

Unix boosters seem almost ashamed to acknowledge this sometimes, as though admitting they're
having fun might damage their legitimacy somehow. But it's true; Unix is fun to play with and
develop for, and always has been.

There are not many operating systems that anyone has ever described as ‘fun’. Indeed, the friction
and labor of development under most other environments has been aptly compared to kicking a dead

whale down the beach.[®] The kindest adjectives one normally hears are on the order of “tolerable” or
“not too painful”. In the Unix world, by contrast, the operating system rewards effort rather than
frustrating it. People programming under Unix usually come to see it not as an adversary to be
clubbed into doing one's bidding by main effort but rather as an actual positive help.

This has real economic significance. The fun factor started a virtuous circle early in Unix's history.
People liked Unix, so they built more programs for it that made it nicer to use. Today people build
entire, production-quality open-source Unix systems as a hobby. To understand how remarkable this
IS, ask yourself when you last heard of anybody cloning OS360 or VAX VMS or Microsoft
Windows for fun.

The *fun’ factor isnot trivial from a design point of view, either. The kind of people who become
programmers and developers have ‘fun’ when the effort they have to put out to do atask challenges
them, but isjust within their capabilities. ‘Fun’ istherefore asign of peak efficiency. Painful
development environments waste labor and creativity; they extract huge hidden costs in time, money,
and opportunity.



If Unix were afailure in every other way, the Unix engineering culture would be worth studying for
the ways it keeps the fun in devel opment — because that fun isa sign that it makes developers
efficient, effective, and productive.

The Lessons of Unix Can Be Applied Elsewhere

Unix programmers have accumul ated decades of experience while pioneering operating-system
features we now take for granted. Even non-Unix programmers can benefit from studying that Unix
experience. Because Unix makesit relatively easy to apply good design principles and development
methods, it is an excellent place to learn them.

Other operating systems generally make good practice rather more difficult, but even so some of the
Unix culture's lessons can transfer. Much Unix code (including all itsfilters, its maor scripting
languages, and many of its code generators) will port directly to any operating system supporting
ANSI C (for the excellent reason that C itself was a Unix invention and the ANSI C library embodies
asubstantial chunk of Unix's services!).

[ Other operating systems have generally copied or cloned Unix TCP/IP implementations. It is their
loss that they have not generally adopted the robust tradition of peer review that goes with it,
exemplified by documents like RFC 1025 (TCP and |P Bake Off).

8 This was originally said of the IBM MV'S TSO facility by Stephen C. Johnson, perhaps better
known as the author of yacc.
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Basics of the Unix Philosophy

The *Unix philosophy’ originated with Ken Thompson's early meditations on how to design a small
but capable operating system with a clean service interface. It grew as the Unix culture learned things
about how to get maximum leverage out of Thompson's design. It absorbed |essons from many
sources along the way.

The Unix philosophy is not aformal design method. It wasn't handed down from the high fastnesses
of theoretical computer science as away to produce theoretically perfect software. Nor isit that
perennial executive's mirage, some way to magically extract innovative but reliable software on too
short a deadline from unmotivated, badly managed, and underpaid programmers.

The Unix philosophy (like successful folk traditionsin other engineering disciplines) is bottom-up,
not top-down. It is pragmatic and grounded in experience. It is not to be found in official methods
and standards, but rather in the implicit half-reflexive knowledge, the expertise that the Unix culture
transmits. It encourages a sense of proportion and skepticism — and shows both by having a sense of
(often subversive) humor.

Doug Mcllroy, the inventor of Unix pipes and one of the founders of the Unix tradition, had this to
say at thetime [Mcllroy78]:

(i) Make each program do one thing well. To do anew job, build afresh rather than
complicate old programs by adding new features.

(if) Expect the output of every program to become the input to another, as yet
unknown, program. Don't clutter output with extraneous information. Avoid stringently
columnar or binary input formats. Don't insist on interactive input.

(iii) Design and build software, even operating systems, to be tried early, ideally within
weeks. Don't hesitate to throw away the clumsy parts and rebuild them.

(iv) Usetoolsin preference to unskilled help to lighten a programming task, even if
you have to detour to build the tools and expect to throw some of them out after you've
finished using them.

He later summarized it thisway (quoted in A Quarter Century of Unix [Salus]):

Thisisthe Unix philosophy: Write programs that do one thing and do it well. Write
programs to work together. Write programs to handle text streams, because that isa
universal interface.



Rob Pike, who became one of the great masters of C, offersadightly different angle in Noteson C
Programming [Pike]:

Rule 1. You can't tell where a program is going to spend its time. Bottlenecks occur in
surprising places, so don't try to second guess and put in a speed hack until you've
proven that's where the bottleneck is.

Rule 2. Measure. Don't tune for speed until you've measured, and even then don't
unless one part of the code overwhelms the rest.

Rule 3. Fancy algorithms are slow when n issmall, and n is usually small. Fancy
algorithms have big constants. Until you know that n is frequently going to be big,
don't get fancy. (Even if n does get big, use Rule 2 first.)

Rule 4. Fancy algorithms are buggier than simple ones, and they're much harder to
implement. Use simple algorithms as well as simple data structures.

Rule 5. Data dominates. If you've chosen the right data structures and organized things
well, the algorithms will aimost always be self-evident. Data structures, not algorithms,

are central to programming.[]
Rule 6. Thereisno Rule 6.

Ken Thompson, the man who designed and implemented the first Unix, reinforced Pike's rule 4 with
agnomic maxim worthy of a Zen patriarch:

When in doubt, use brute force.

More of the Unix philosophy was implied not by what these elders said but by what they did and the
example Unix itself set. Looking at the whole, we can abstract the following ideas:

1. Rule of Modularity: Write simple parts connected by clean interfaces.

2. Ruleof Clarity: Clarity is better than cleverness.

3. Rule of Composition: Design programs to be connected to other programs.

4. Rule of Separation: Separate policy from mechanism; separate interfaces from engines.
5. Rule of Simplicity: Design for ssmplicity; add complexity only where you must.

6. Rule of Parssimony: Write a big program only when it is clear by demonstration that nothing
elsewill do.



7. Rule of Transparency: Design for visibility to make inspection and debugging easier.

8. Rule of Robustness: Robustnessis the child of transparency and simplicity.

9. Rule of Representation: Fold knowledge into data so program logic can be stupid and robust.
10. Ruleof Least Surprise: In interface design, always do the least surprising thing.
11. Rule of Silence: When a program has nothing surprising to say, it should say nothing.
12. Rule of Repair: When you must fail, fail noisily and as soon as possible.
13. Rule of Economy: Programmer time is expensive; conserve it in preference to machine time.
14. Rule of Generation: Avoid hand-hacking; write programs to write programs when you can.
15. Rule of Optimization: Prototype before polishing. Get it working before you optimize it.
16. Ruleof Diversity: Distrust al claims for “one true way”.
17. Rule of Extensibility: Design for the future, because it will be here sooner than you think.

If you're new to Unix, these principles are worth some meditation. Software-engineering texts
recommend most of them; but most other operating systems lack the right tools and traditions to turn
them into practice, so most programmers can't apply them with any consistency. They come to accept
blunt tools, bad designs, overwork, and bloated code as normal — and then wonder what Unix fans
are so annoyed about.

Rule of Modularity: Write simple parts connected by clean interfaces.

As Brian Kernighan once observed, “Controlling complexity is the essence of computer
programming” [Kernighan-Plauger]. Debugging dominates development time, and getting a working
system out the door is usually less aresult of brilliant design than it is of managing not to trip over
your own feet too many times.

Assemblers, compilers, flowcharting, procedural programming, structured programming, “artificia
intelligence”, fourth-generation languages, object orientation, and software-devel opment

methodol ogies without number have been touted and sold as a cure for this problem. All have failed
ascures, if only because they ‘succeeded’ by escalating the normal level of program complexity to
the point where (once again) human brains could barely cope. As Fred Brooks famously observed
[Brooks], thereis no silver bullet.

The only way to write complex software that won't fall on itsfaceisto hold its global complexity



down — to build it out of simple parts connected by well-defined interfaces, so that most problems
are local and you can have some hope of upgrading a part without breaking the whole.

Rule of Clarity: Clarity is better than cleverness.

Because maintenance is so important and so expensive, write programs as if the most important
communication they do is not to the computer that executes them but to the human beings who will
read and maintain the source code in the future (including yourself).

In the Unix tradition, the implications of this advice go beyond just commenting your code. Good
Unix practice al'so embraces choosing your algorithms and implementations for future
maintainability. Buying asmall increase in performance with alarge increase in the complexity and
obscurity of your technique is a bad trade — not merely because complex code is more likely to
harbor bugs, but also because complex code will be harder to read for future maintainers.

Code that is graceful and clear, on the other hand, isless likely to break — and more likely to be
instantly comprehended by the next person to have to change it. Thisisimportant, especially when
that next person might be yourself some years down the road.

Never struggle to decipher subtle code three times. Once might be a one-shot
fluke, but if you find yourself having to figure it out a second time — because
the first was too long ago and you've forgotten details — it is time to comment
the code so that the third time will be relatively painless.

-- Henry Spencer

Rule of Composition: Design programs to be connected with other
programs.

It's hard to avoid programming overcomplicated monoliths if none of your programs can talk to each
other.

Unix tradition strongly encourages writing programs that read and write simple, textual, stream-
oriented, device-independent formats. Under classic Unix, as many programs as possible are written
as simple filters, which take a simple text stream on input and process it into another simple text
stream on output.

Despite popular mythology, this practice is favored not because Unix programmers hate graphical
user interfaces. It's because if you don't write programs that accept and emit simple text streams, it's
much more difficult to hook the programs together.

Text streams are to Unix tools as messages are to objects in an object-oriented setting. The simplicity
of the text-stream interface enforces the encapsulation of the tools. More elaborate forms of inter-
process communication, such as remote procedure calls, show atendency to involve programs with
each others internals too much.



To make programs composable, make them independent. A program on one end of atext stream
should care as little as possible about the program on the other end. It should be made easy to replace
one end with a completely different implementation without disturbing the other.

GUIs can be a very good thing. Complex binary data formats are sometimes unavoidable by any
reasonable means. But before writing a GUI, it'swise to ask if the tricky interactive parts of your
program can be segregated into one piece and the workhorse algorithms into another, with asimple
command stream or application protocol connecting the two. Before devising atricky binary format
to pass data around, it's worth experimenting to see if you can make a simple textual format work and
accept alittle parsing overhead in return for being able to hack the data stream with general -purpose
tools.

When a serialized, protocol-like interface is not natural for the application, proper Unix design isto at
least organize as many of the application primitives as possible into a library with awell-defined API.
This opens up the possibility that the application can be called by linkage, or that multiple interfaces
can be glued on it for different tasks.

(Wediscuss these issuesin detail in Chapter 7.)

Rule of Separation: Separate policy from mechanism; separate interfaces
from engines.

In our discussion of what Unix gets wrong, we observed that the designers of X made abasic
decision to implement “mechanism, not policy” —to make X a generic graphics engine and leave
decisions about user-interface style to toolkits and other levels of the system. We justified this by
pointing out that policy and mechanism tend to mutate on different timescales, with policy changing
much faster than mechanism. Fashionsin the look and feel of GUI toolkits may come and go, but
raster operations and compositing are forever.

Thus, hardwiring policy and mechanism together has two bad effects. It makes policy rigid and
harder to change in response to user requirements, and it means that trying to change policy has a
strong tendency to destabilize the mechanisms.

On the other hand, by separating the two we make it possible to experiment with new policy without
breaking mechanisms. We also make it much easier to write good tests for the mechanism (policy,
because it ages so quickly, often does not justify the investment).

This design rule has wide application outside the GUI context. In general, it implies that we should
look for ways to separate interfaces from engines.

One way to effect that separation is, for example, to write your application as alibrary of C service
routines that are driven by an embedded scripting language, with the application flow of control
written in the scripting language rather than C. A classic example of this pattern is the Emacs editor,
which uses an embedded Lisp interpreter to control editing primitives written in C. We discuss this



style of designin Chapter 11.

Another way isto separate your application into cooperating front-end and back-end processes
communicating through a specialized application protocol over sockets; we discuss this kind of
design in Chapter 5 and Chapter 7. The front end implements policy; the back end, mechanism. The
global complexity of the pair will often be far lower than that of a single-process monolith
implementing the same functions, reducing your vulnerability to bugs and lowering life-cycle costs.

Rule of Simplicity: Design for simplicity; add complexity only where you
must.

Many pressures tend to make programs more complicated (and therefore more expensive and buggy).
One such pressure is technical machismo. Programmers are bright people who are (often justly)
proud of their ability to handle complexity and juggle abstractions. Often they compete with their
peers to see who can build the most intricate and beautiful complexities. Just as often, their ability to
design outstrips their ability to implement and debug, and the result is expensive failure.

The notion of “intricate and beautiful complexities’ isamost an oxymoron.
Unix programmers vie with each other for “simple and beautiful” honors —
apoint that'simplicit in these rules, but is well worth making overt.

-- Doug Mcllroy

Even more often (at least in the commercial software world) excessive complexity comes from
project requirements that are based on the marketing fad of the month rather than the reality of what
customers want or software can actually deliver. Many a good design has been smothered under
marketing's pile of “checklist features’ — features that, often, no customer will ever use. And a
vicious circle operates; the competition thinks it has to compete with chrome by adding more chrome.
Pretty soon, massive bloat is the industry standard and everyone is using huge, buggy programs not
even their developers can love.

Either way, everybody loses in the end.

The only way to avoid these trapsis to encourage a software culture that knows that small is
beautiful, that actively resists bloat and complexity: an engineering tradition that puts a high value on
simple solutions, that looks for ways to break program systems up into small cooperating pieces, and
that reflexively fights attempts to gussy up programs with alot of chrome (or, even worse, to design
programs around the chrome).

That would be aculture alot like Unix's.

Rule of Parsimony: Write a big program only when it is clear by
demonstration that nothing else will do.

‘Big’ here has the sense both of large in volume of code and of internal complexity. Allowing



programs to get large hurts maintainability. Because people are reluctant to throw away the visible
product of lots of work, large programs invite overinvestment in approaches that are failed or
suboptimal.

(Well examine the issue of theright size of software in more detail in Chapter 13.)

Rule of Transparency: Design for visibility to make inspection and
debugging easier.

Because debugging often occupies three-quarters or more of development time, work done early to
ease debugging can be a very good investment. A particularly effective way to ease debugging isto
design for transparency and discoverability.

A software system is transparent when you can ook at it and immediately understand what it is
doing and how. It is discoverable when it has facilities for monitoring and display of internal state so
that your program not only functions well but can be seen to function well.

Designing for these qualities will have implications throughout a project. At minimum, it implies that
debugging options should not be minimal afterthoughts. Rather, they should be designed in from the
beginning — from the point of view that the program should be able to both demonstrate its own
correctness and communicate to future developers the original devel oper's mental model of the
problem it solves.

For a program to demonstrate its own correctness, it needs to be using input and output formats
sufficiently ssmple so that the proper relationship between valid input and correct output is easy to
check.

The objective of designing for transparency and discoverability should also encourage simple
interfaces that can easily be manipulated by other programs — in particular, test and monitoring
harnesses and debugging scripts.

Rule of Robustness: Robustness is the child of transparency and
simplicity.

Software is said to be robust when it performs well under unexpected conditions which stress the
designer's assumptions, as well as under normal conditions.

Most software is fragile and buggy because most programs are too complicated for a human brain to
understand all at once. When you can't reason correctly about the guts of a program, you can't be sure
it's correct, and you can't fix it if it's broken.

It follows that the way to make robust programsisto make their internals easy for human beings to
reason about. There are two main ways to do that: transparency and simplicity.



For robustness, designing in tolerance for unusual or extremely bulky inputsis
also important. Bearing in mind the Rule of Composition helps; input generated
by other programs is notorious for stress-testing software (e.g., the original Unix
C compiler reportedly needed small upgrades to cope well with Y acc output).
The forms involved often seem useless to humans. For example, accepting empty
lists/stringg/etc., even in places where a human would seldom or never supply an
empty string, avoids having to special-case such situations when generating the
input mechanically.

-- Henry Spencer

One very important tactic for being robust under odd inputsisto avoid having specia casesin your
code. Bugs often lurk in the code for handling special cases, and in the interactions among parts of
the code intended to handle different special cases.

We observed above that software is transparent when you can look at it and immediately see what is
going on. It is simple when what is going on is uncomplicated enough for a human brain to reason
about all the potential cases without strain. The more your programs have both of these qualities, the
more robust they will be.

Modularity (ssmple parts, clean interfaces) is away to organize programs to make them simpler.
There are other ways to fight for simplicity. Here's another one.

Rule of Representation: Fold knowledge into data, so program logic can
be stupid and robust.

Even the ssimplest procedural logic is hard for humans to verify, but quite complex data structures are
fairly easy to model and reason about. To see this, compare the expressiveness and explanatory
power of adiagram of (say) afifty-node pointer tree with aflowchart of afifty-line program. Or,
compare an array initializer expressing a conversion table with an equivaent switch statement. The
difference in transparency and clarity is dramatic. See Rob Pike's Rule 5.

Data is more tractable than program logic. It follows that where you see a choice between complexity
In data structures and complexity in code, choose the former. More: in evolving adesign, you should
actively seek ways to shift complexity from code to data.

The Unix community did not originate thisinsight, but alot of Unix code displaysitsinfluence. The
C language's facility at manipulating pointers, in particular, has encouraged the use of dynamically-
modified reference structures at all levels of coding from the kernel upward. Simple pointer chasesin
such structures frequently do duties that implementations in other languages would instead have to
embody in more elaborate procedures.

(We aso cover these techniques in Chapter 9.)

Rule of Least Surprise: In interface design, always do the least surprising



thing.
(Thisis aso widely known as the Principle of Least Astonishment.)

The easiest programs to use are those that demand the least new learning from the user — or, to put it
another way, the easiest programs to use are those that most effectively connect to the user's pre-
existing knowledge.

Therefore, avoid gratuitous novelty and excessive clevernessin interface design. If you're writing a
calculator program, ‘+ should always mean addition! When designing an interface, model it on the
interfaces of functionally similar or analogous programs with which your users are likely to be
familiar.

Pay attention to your expected audience. They may be end users, they may be other programmers, or
they may be system administrators. What is least surprising can differ among these groups.

Pay attention to tradition. The Unix world has rather well-devel oped conventions about things like
the format of configuration and run-control files, command-line switches, and the like. These
traditions exist for a good reason: to tame the learning curve. Learn and use them.

(WEell cover many of these traditions in Chapter 5 and Chapter 10.)

Theflip side of the Rule of Least Surpriseisto avoid making things superficially
similar but really alittle bit different. Thisis extremely treacherous because the
seeming familiarity raises false expectations. It's often better to make things
distinctly different than to make them almost the same.

-- Henry Spencer

Rule of Silence: When a program has nothing surprising to say, it should
say nothing.

One of Unix's oldest and most persistent design rules is that when a program has nothing interesting
or surprising to say, it should shut up. Well-behaved Unix programs do their jobs unobtrusively, with
aminimum of fuss and bother. Silenceis golden.

This“silenceis golden” rule evolved originally because Unix predates video displays. On the slow
printing terminals of 1969, each line of unnecessary output was a serious drain on the user'stime.
That constraint is gone, but excellent reasons for terseness remain.



| think that the terseness of Unix programsis a central feature of the style. When
your program's output becomes another's input, it should be easy to pick out the
needed bits. And for peopleit is a human-factors necessity — important
information should not be mixed in with verbosity about internal program
behavior. If all displayed information is important, important information is easy
to find.

-- Ken Arnold

Well-designed programs treat the user's attention and concentration as a precious and limited
resource, only to be claimed when necessary.

(WEell discuss the Rule of Silence and the reasons for it in more detail at the end of Chapter 11.)

Rule of Repair: Repair what you can — but when you must fail, fail noisily
and as soon as possible.

Software should be transparent in the way that it fails, as well asin normal operation. It's best when
software can cope with unexpected conditions by adapting to them, but the worst kinds of bugs are
those in which the repair doesn't succeed and the problem quietly causes corruption that doesn't show
up until much later.

Therefore, write your software to cope with incorrect inputs and its own execution errors as
gracefully as possible. But when it cannot, make it fail in away that makes diagnosis of the problem
as easy as possible.

Consider aso Postel's Prescripti on:2¥ “Be liberal in what you accept, and conservative in what you
send” . Postel was speaking of network service programs, but the underlying ideais more general.
Well-designed programs cooperate with other programs by making as much sense as they can from
ilI-formed inputs; they either fail noisily or pass strictly clean and correct data to the next program in
the chain.

However, heed a so this warning:

The original HTML documents recommended “ be generous in what you accept”,
and it has bedeviled us ever since because each browser accepts a different
superset of the specifications. It is the specifications that should be generous, not
their interpretation.

-- Doug Mcllroy

Mcllroy adjures us to design for generosity rather than compensating for inadequate standards with
permissive implementations. Otherwise, as he rightly points out, it's all too easy to end up in tag soup.

Rule of Economy: Programmer time is expensive; conserve itin
preference to machine time.



In the early minicomputer days of Unix, thiswas still afairly radical idea (machines were a great deal
slower and more expensive then). Nowadays, with every development shop and most users (apart
from the few modeling nuclear explosions or doing 3D movie animation) awash in cheap machine
cycles, it may seem too obvious to need saying.

Somehow, though, practice doesn't seem to have quite caught up with reality. If we took this maxim
really seriously throughout software development, most applications would be written in higher-level
languages like Perl, Tcl, Python, Java, Lisp and even shell — languages that ease the programmer's
burden by doing their own memory management (see [Ravenbrook]).

And indeed this is happening within the Unix world, though outside it most applications shops still
seem stuck with the old-school Unix strategy of coding in C (or C++). Later in this book we'll discuss
this strategy and its tradeoffs in detail.

One other obvious way to conserve programmer time is to teach machines how to do more of the low-
level work of programming. Thisleadsto...

Rule of Generation: Avoid hand-hacking; write programs to write
programs when you can.

Human beings are notoriously bad at sweating the details. Accordingly, any kind of hand-hacking of
programsis arich source of delays and errors. The simpler and more abstracted your program
specification can be, the more likely it is that the human designer will have gotten it right. Generated
code (at every level) is almost aways cheaper and more reliable than hand-hacked.

We dl know thisistrue (it's why we have compilers and interpreters, after all) but we often don't
think about the implications. High-level-language code that's repetitive and mind-numbing for
humansto write isjust as productive atarget for a code generator as machine code. It paysto use
code generators when they can raise the level of abstraction — that is, when the specification
language for the generator is ssimpler than the generated code, and the code doesn't have to be hand-
hacked afterwards.

In the Unix tradition, code generators are heavily used to automate error-prone detail work. Parser/
lexer generators are the classic examples; makefile generators and GUI interface builders are newer
Ones.

(We cover these techniques in Chapter 9.)

Rule of Optimization: Prototype before polishing. Get it working before
you optimize it.

The most basic argument for prototyping first is Kernighan & Plauger's; “90% of the functionality
delivered now is better than 100% of it delivered never”. Prototyping first may help keep you from



investing far too much time for marginal gains.

For dightly different reasons, Donald Knuth (author of The Art Of Computer Programming, one of
the field's few true classics) popularized the observation that “ Premature optimization is the root of

al evil” X1 And he was right.

Rushing to optimize before the bottlenecks are known may be the only error to have ruined more
designs than feature creep. From tortured code to incomprehensible data layouts, the results of
obsessing about speed or memory or disk usage at the expense of transparency and simplicity are
everywhere. They spawn innumerable bugs and cost millions of man-hours — often, just to get
marginal gainsin the use of some resource much less expensive than debugging time.

Disturbingly often, premature local optimization actually hinders global optimization (and hence
reduces overall performance). A prematurely optimized portion of a design frequently interferes with
changes that would have much higher payoffs across the whole design, so you end up with both
inferior performance and excessively complex code.

In the Unix world there is along-established and very explicit tradition (exemplified by Rob Pike's
comments above and Ken Thompson's maxim about brute force) that says. Prototype, then polish.
Get it working before you optimize it. Or: Make it work first, then make it work fast. ‘ Extreme
programming' guru Kent Beck, operating in a different culture, has usefully amplified thisto: “Make
it run, then make it right, then make it fast”.

The thrust of all these quotesisthe same: get your design right with an un-optimized, slow, memory-
intensive implementation before you try to tune. Then, tune systematically, looking for the places
where you can buy big performance wins with the smallest possible increases in local complexity.

Prototyping isimportant for system design as well as optimization — it is much
eas er to judge whether a prototype does what you want than it isto read along
specification. | remember one devel opment manager at Bellcore who fought
against the “requirements’ culture years before anybody talked about “rapid
prototyping” or “agile development”. He wouldn't issue long specifications; he'd
lash together some combination of shell scripts and awk code that did roughly
what was needed, tell the customers to send him some clerks for afew days, and
then have the customers come in and look at their clerks using the prototype and
tell him whether or not they liked it. If they did, he would say “you can have it
industrial strength so-many-months from now at such-and-such cost”. His
estimates tended to be accurate, but he lost out in the culture to managers who
believed that requirements writers should be in control of everything.

-- Mike Lesk

Using prototyping to learn which features you don't have to implement helps optimization for
performance; you don't have to optimize what you don't write. The most powerful optimization tool
In existence may be the delete key.



One of my most productive days was throwing away 1000 lines of code.
-- Ken Thompson

(WFell go into abit more depth about related ideas in Chapter 12.)

Rule of Diversity: Distrust all claims for “one true way”.

Even the best software tools tend to be limited by the imaginations of their designers. Nobody is
smart enough to optimize for everything, nor to anticipate all the uses to which their software might
be put. Designing rigid, closed software that won't talk to the rest of the world is an unhealthy form of
arrogance.

Therefore, the Unix tradition includes a healthy mistrust of “one true way” approaches to software
design or implementation. It embraces multiple languages, open extensible systems, and
customization hooks everywhere.

Rule of Extensibility: Design for the future, because it will be here sooner
than you think,

If it isunwiseto trust other people's claims for “one true way”, it's even more foolish to believe them
about your own designs. Never assume you have the final answer. Therefore, leave room for your
data formats and code to grow; otherwise, you will often find that you are locked into unwise early
choices because you cannot change them while maintaining backward compatibility.

When you design protocols or file formats, make them sufficiently self-describing to be extensible.
Always, always either include a version number, or compose the format from self-contained, self-
describing clauses in such away that new clauses can be readily added and old ones dropped without
confusing format-reading code. Unix experience tells us that the marginal extra overhead of making
data layouts self-describing is paid back athousandfold by the ability to evolve them forward without
breaking things.

When you design code, organize it so future developers will be able to plug new functionsinto the
architecture without having to scrap and rebuild the architecture. Thisrule is not alicense to add
features you don't yet need; it's advice to write your code so that adding features later when you do
need them is easy. Make the joints flexible, and put “1f you ever need to...” comments in your code.
Y ou owe this grace to people who will use and maintain your code after you.

You'll be there in the future too, maintaining code you may have half forgotten under the press of
more recent projects. When you design for the future, the sanity you save may be your own.

4 pike's original adds “(See Brooks p. 102.)” here. The referenceisto an early edition of The
Mythical Man-Month [Brooks]; the quote is “ Show me your flow charts and conceal your tables and |



shall continue to be mystified, show me your tables and | won't usually need your flow charts; they'll
be obvious’.

(X9 Jonathan Postel was the first editor of the Internet RFC series of standards, and one of the
principal architects of the Internet. A tribute page is maintained by the Postel Center for Experimental
Networking.

(X1 In full: “We should forget about small efficiencies, say about 97% of the time: premature
optimization isthe root of al evil”. Knuth himself attributes the remark to C. A. R. Hoare.
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The Unix Philosophy in One Lesson

All the philosophy really boils down to oneiron law, the hallowed ‘KISS principle’ of master
engineers everywhere:

K.L.S.S.

Keep It Simple, Stupid!

Unix gives you an excellent base for applying the KISS principle. The remainder of this book will
help you learn how.
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Applying the Unix Philosophy

These philosophical principles aren't just vague generalities. In the Unix world they come straight
from experience and lead to specific prescriptions, some of which we've already devel oped above.
Here's aby no means exhaustive list:

. Everything that can be a source- and destination-independent filter should be one.

. Datastreams should if at al possible be textual (so they can be viewed and filtered with
standard tools).

. Database layouts and application protocols should if at all possible be textual (human-readable
and human-editable).

. Complex front ends (user interfaces) should be cleanly separated from complex back ends.
. Whenever possible, prototype in an interpreted language before coding C.

« Mixing languages is better than writing everything in one, if and only if using only that oneis
likely to overcomplicate the program.

. Begenerousin what you accept, rigorous in what you emit.
. When filtering, never throw away information you don't need to.
. Small is beautiful. Write programs that do as little asis consistent with getting the job done.

WEe'll see the Unix design rules, and the prescriptions that derive from them, applied over and over
again in the remainder of this book. Unsurprisingly, they tend to converge with the very best

practices from software engineering in other traditions.[22

112 One notable example is Butler Lampson's Hints for Computer System Design [Lampson], which |

discovered late in the preparation of this book. It not only expresses a number of Unix dictain forms
that were clearly discovered independently, but uses many of the same tag linesto illustrate them.
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Attitude Matters Too

When you see the right thing, do it — this may look like more work in the short term, but it's the path
of least effort in the long run. If you don't know what the right thing is, do the minimum necessary to
get the job done, at least until you figure out what the right thing is.

To do the Unix philosophy right, you have to be loyal to excellence. Y ou have to believe that
software design is a craft worth all the intelligence, creativity, and passion you can muster. Otherwise
you won't look past the easy, stereotyped ways of approaching design and implementation; you'll

rush into coding when you should be thinking. Y ou'll carelessly complicate when you should be
relentlessly simplifying — and then you'll wonder why your code bloats and debugging is so hard.

To do the Unix philosophy right, you have to value your own time enough never to waste it. If
someone has already solved a problem once, don't et pride or politics suck you into solving it a
second time rather than re-using. And never work harder than you have to; work smarter instead, and
save the extra effort for when you need it. Lean on your tools and automate everything you can.

Software design and implementation should be a joyous art, akind of high-level play. If this attitude
seems preposterous or vaguely embarrassing to you, stop and think; ask yourself what you've
forgotten. Why do you design software instead of doing something else to make money or pass the
time? Y ou must have thought software was worthy of your passion once....

To do the Unix philosophy right, you need to have (or recover) that attitude. Y ou need to care. You
need to play. Y ou need to be willing to explore.

We hope you'll bring this attitude to the rest of this book. Or, at least, that this book will help you
rediscover it.
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Chapter 2. History

A Tale of Two Cultures
Table of Contents

Origins and History of Unix, 1969-1995
Genesis:. 1969-1971
Exodus. 1971-1980
TCP/IP and the Unix Wars. 1980-1990
Blows against the Empire: 1991-1995
Origins and History of the Hackers, 1961-1995
At Play in the Groves of Academe: 1961-1980
| nternet Fusion and the Free Software Movement: 1981-1991
Linux and the Pragmatist Reaction: 1991-1998
The Open-Source Movement: 1998 and Onward
The Lessons of Unix History

Those who cannot remember the past are condemned to repeat it.
-- George Santayana The Life of Reason (1905)

The past informs practice. Unix has along and colorful history, much of which isstill live asfolklore,
assumptions, and (too often) battle scarsin the collective memory of Unix programmers. In this
chapter we'll survey the history of Unix, with an eye to explaining why, in 2003, today's Unix culture
looks the way it does.
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Origins and History of Unix, 1969-1995

A notorious ‘ second-system effect’ often afflicts the successors of small experimental prototypes. The urge to add
everything that was left out the first time around all too frequently leads to huge and overcomplicated design. Less
well known, because less common, is the ‘third-system effect’; sometimes, after the second system has collapsed of
its own weight, there is a chance to go back to simplicity and get it really right.

The origina Unix was athird system. Its grandfather was the small and simple Compatible Time-Sharing System
(CTSS), either thefirst or second timesharing system ever deployed (depending on some definitional questions we
are going to determinedly ignore). Its father was the pioneering Multics project, an attempt to create a feature-
packed ‘information utility’ that would gracefully support interactive timesharing of mainframe computers by large
communities of users. Multics, aas, did collapse of its own weight. But Unix was born from that collapse.

Genesis: 1969-1971

Unix was born in 1969 out of the mind of a computer scientist at Bell Laboratories, Ken Thompson. Thompson had
been aresearcher on the Multics project, an experience which spoiled him for the primitive batch computing that
was the rule amost everywhere else. But the concept of timesharing was still anovel onein the late 1960s; the first
speculations on it had been uttered barely ten years earlier by computer scientist John McCarthy (also the inventor
of the Lisp language), the first actual deployment had been in 1962, seven years earlier, and timesharing operating
systems were still experimental and temperamental beasts.

Computer hardware was at that time more primitive than even people who were there to see it can now easily
recall. The most powerful machines of the day had less computing power and internal memory than atypical
cellphone of today.llj’l Video display terminals were in their infancy and would not be widely deployed for another
six years. The standard interactive device on the earliest timesharing systems was the ASR-33 teletype — a slow,
noisy device that printed upper-case-only on big rolls of yellow paper. The ASR-33 was the natural parent of the
Unix tradition of terse commands and sparse responses.

When Bell Labs withdrew from the Multics research consortium, Ken Thompson was left with some Multics-
inspired ideas about how to build afile system. He was also left without a machine on which to play a game he had
written called Space Travel, a science-fiction simulation that involved navigating arocket through the solar system.

Unix began itslife on a scavenged PDP-7 mini computer[lil] like the one shown in Figure 2.1, as a platform for the
Space Travel game and a testbed for Thompson's ideas about operating system design.

Figure2.1. The PDP-7.



The full origin story istold in [Ritchie79] from the point of view of Thompson'sfirst collaborator, Dennis Ritchie,
the man who would become known as the co-inventor of Unix and the inventor of the C language. Dennis Ritchie,

Doug Mcllroy, and afew colleagues had become used to interactive computing under Multics and did not want to
lose that capability. Thompson's PDP-7 operating system offered them alifeline.

Ritchie observes: “What we wanted to preserve was not just a good environment in which to do programming, but




a system around which afellowship could form. We knew from experience that the essence of communal
computing, as supplied by remote-access, time-shared machines, is not just to type programs into aterminal instead
of a keypunch, but to encourage close communication”. The theme of computers being viewed not merely aslogic
devices but as the nuclei of communitieswas in the air; 1969 was a so the year the ARPANET (the direct ancestor
of today's Internet) was invented. The theme of “fellowship” would resonate all through Unix's subsequent history.

Thompson and Ritchie's Space Travel implementation attracted notice. At first, the PDP-7's software had to be
cross-compiled on a GE mainframe. The utility programs that Thompson and Ritchie wrote to support hosting
game development on the PDP-7 itself became the core of Unix — though the name did not attach itself until 1970.
The origina spelling was“UNICS’ (UNiplexed Information and Computing Service), which Ritchie later
described as “a somewhat treacherous pun on Multics’, which stood for MUL Tiplexed Information and Computing
Service.

Even at its earliest stages, PDP-7 Unix bore a strong resemblance to today's Unixes and provided a rather more
pleasant programming environment than was available anywhere else in those days of card-fed batch mainframes.
Unix was very close to being the first system under which a programmer could sit down directly at a machine and
compose programs on the fly, exploring possibilities and testing while composing. All through its lifetime Unix has
had a pattern of growing more capabilities by attracting highly skilled volunteer efforts from programmers
impatient with the limitations of other operating systems. This pattern was set early, within Bell Labs itself.

The Unix tradition of lightweight development and informal methods also began at its beginning. Where Multics
had been alarge project with thousands of pages of technical specifications written before the hardware arrived, the
first running Unix code was brainstormed by three people and implemented by Ken Thompson in two days — on
an obsolete machine that had been designed to be a graphicsterminal for a‘real’ computer.

Unix'sfirst real job, in 1971, was to support what would now be called word processing for the Bell Labs patent
department; the first Unix application was the ancestor of the nroff(1) text formatter. This project justified the
purchase of a PDP-11, a much more capable minicomputer. Management remained blissfully unaware that the
word-processing system that Thompson and colleagues were building was incubating an operating system.
Operating systems were not in the Bell Labs plan — AT&T had joined the Multics consortium precisely to avoid
doing an operating system on its own. Nevertheless, the completed system was a rousing success. It established
Unix as a permanent and valued part of the computing ecology at Bell Labs, and began another theme in Unix's
history — a close association with document-formatting, typesetting, and communications tools. The 1972 manual
claimed 10 installations.

Later, Doug Mcllroy would write of this period [Mcllroy91]: “Peer pressure and simple pride in workmanship
caused gobs of code to be rewritten or discarded as better or more basic ideas emerged. Professional rivalry and
protection of turf were practically unknown: so many good things were happening that nobody needed to be
proprietary about innovations’. But it would take another quarter century for all the implications of that
observation to come home.

Exodus: 1971-1980

The original Unix operating system was written in assembler, and the applicationsin a mix of assembler and an
interpreted language called B, which had the virtue that it was small enough to run on the PDP-7. But B was not
powerful enough for systems programming, so Dennis Ritchie added data types and structuresto it. The resulting C
language evolved from B beginning in 1971; in 1973 Thompson and Ritchie finally succeeded in rewriting Unix in
their new language. This was quite an audacious move; at the time, system programming was done in assembler in
order to extract maximum performance from the hardware, and the very concept of a portable operating system was
barely agleam in anyone's eye. Aslate as 1979, Ritchie could write: “It seems certain that much of the success of
Unix follows from the readability, modifiability, and portability of its software that in turn follows from its



expression in high-level languages’, in the knowledge that this was a point that still needed making.

Ken (seated) and Dennis (standing) at a PDP-11in 1972.

A 1974 paper in Communications of the ACM [Ritchie-Thompson] gave Unix itsfirst public exposure. In that
paper, its authors described the unprecedentedly simple design of Unix, and reported over 600 Unix installations.
All were on machines underpowered even by the standards of that day, but (as Ritchie and Thompson wrote)
“constraint has encouraged not only economy, but also a certain elegance of design”.

After the CACM paper, research labs and universities all over the world clamored for the chance to try out Unix
themselves. Under a 1958 consent decree in settlement of an antitrust case, AT& T (the parent organization of Bell
Labs) had been forbidden from entering the computer business. Unix could not, therefore, be turned into a product;
indeed, under the terms of the consent decree, Bell Labs was required to license its nontel ephone technology to
anyone who asked. Ken Thompson quietly began answering requests by shipping out tapes and disk packs — each,
according to legend, with a note signed “love, ken”.

Thiswas years before personal computers. Not only was the hardware needed to run Unix too expensive to be
within an individual's reach, but nobody imagined that would change in the foreseeable future. So Unix machines
were only available by the grace of big organizations with big budgets. corporations, universities, government
agencies. But use of these minicomputers was less regulated than the even-bigger mainframes, and Unix



development rapidly took on a countercultural air. It was the early 1970s; the pioneering Unix programmers were
shaggy hippies and hippie-wannabes. They delighted in playing with an operating system that not only offered
them fascinating challenges at the leading edge of computer science, but also subverted all the technical
assumptions and business practices that went with Big Computing. Card punches, COBOL, business suits, and
batch IBM mainframes were the despised old wave; Unix hackers reveled in the sense that they were
simultaneously building the future and flipping afinger at the system.

The excitement of those days is captured in this quote from Douglas Comer: “Many universities contributed to
UNIX. At the University of Toronto, the department acquired a 200-dot-per-inch printer/plotter and built software
that used the printer to simulate a phototypesetter. At Yae University, students and computer scientists modified
the UNIX shell. At Purdue University, the Electrical Engineering Department made major improvementsin
performance, producing aversion of UNIX that supported alarger number of users. Purdue also developed one of
the first UNIX computer networks. At the University of California at Berkeley, students developed a new shell and
dozens of smaller utilities. By the late 1970s, when Bell Labsreleased Version 7 UNIX, it was clear that the system
solved the computing problems of many departments, and that it incorporated many of the ideas that had arisen in
universities. The end result was a strengthened system. A tide of ideas had started a new cycle, flowing from
academiato an industrial laboratory, back to academia, and finally moving on to a growing number of commercial

sites’ [Comer].

Thefirst Unix of which it can be said that essentially all of it would be recognizable to a modern Unix programmer

was the Version 7 release in 1979.1% The first Unix user group had formed the previous year. By thistime Unix
was in use for operations support all through the Bell System [Hauben], and had spread to universities as far away
as Australia, where John Lions's 1976 notes [Lions] on the Version 6 source code became the first serious
documentation of the Unix kernel internals. Many senior Unix hackers still treasure a copy.

The Lions book was a samizdat publishing sensation. Because of copyright infringement or
some such it couldn't be published in the U.S., so copies of copies seeped everywhere. | till
have my copy, which was at |east 6th generation. Back then you couldn't be a kernel hacker
without aLions.

-- Ken Arnold

The beginnings of a Unix industry were coaescing as well. The first Unix company (the Santa Cruz Operation,
SCO) began operations in 1978, and the first commercial C compiler (Whitesmiths) sold that same year. By 1980
an obscure software company in Seattle was also getting into the Unix game, shipping a port of the AT& T version
for microcomputers called XENIX. But Microsoft's affection for Unix as a product was not to last very long
(though Unix would continue to be used for most internal development work at the company until after 1990).

TCP/IP and the Unix Wars: 1980-1990

The Berkeley campus of the University of Californiaemerged early as the single most important academic hot-spot
in Unix development. Unix research had begun there in 1974, and was given a substantial impetus when Ken
Thompson taught at the University during a 1975-76 sabbatical. The first BSD release had been in 1977 from alab
run by athen-unknown grad student named Bill Joy. By 1980 Berkeley was the hub of a sub-network of
universities actively contributing to their variant of Unix. Ideas and code from Berkeley Unix (including the vi(1)
editor) were feeding back from Berkeley to Bell Labs.

Then, in 1980, the Defense Advanced Research Projects Agency needed ateam to implement its brand-new TCP/

| P protocol stack on the VAX under Unix. The PDP-10s that powered the ARPANET at that time were aging, and
indications that DEC might be forced to cancel the 10 in order to support the VAX were already in the air. DARPA
considered contracting DEC to implement TCP/IP, but rejected that idea because they were concerned that DEC
might not be responsive to requests for changes in their proprietary VAX/VMS operating system [Libes-Ressler].




Instead, DARPA chose Berkeley Unix as a platform — explicitly because its source code was available and
unencumbered [Leonard].

Berkeley's Computer Science Research Group was in the right place at the right time with the strongest
development tools; the result became arguably the most critical turning point in Unix's history since its invention.

Until the TCP/IP implementation was released with Berkeley 4.2 in 1983, Unix had had only the weakest
networking support. Early experiments with Ethernet were unsatisfactory. An ugly but serviceable facility called
UUCP (Unix to Unix Copy Program) had been developed at Bell Labs for distributing software over conventional

telephone lines via modem.IX¥l UUCP could forward Unix mail between widely separated machines, and (after
Usenet was invented in 1981) supported Usenet, a distributed bulletin-board facility that allowed users to broadcast
text messages to anywhere that had phone lines and Unix systems.

Still, the few Unix users aware of the bright lights of the ARPANET felt like they were stuck in a backwater. No
FTP, no telnet, only the most restricted remote job execution, and painfully slow links. Before TCP/IP, the Internet
and Unix cultures did not mix. Dennis Ritchie's vision of computers as a way to “encourage close communication”
was one of collegial communities clustered around individual timesharing machines or in the same computing
center; it didn't extend to the continent-wide distributed ‘ network nation’ that ARPA users had started to formin
the mid-1970s. Early ARPANETters, for their part, considered Unix a crude makeshift limping along on risibly
weak hardware.

After TCP/IP, everything changed. The ARPANET and Unix cultures began to merge at the edges, a devel opment
that would eventually save both from destruction. But there would be hell to pay first as the result of two unrelated
disasters; the rise of Microsoft and the AT& T divestiture.

In 1981, Microsoft made its historic deal with IBM over the new IBM PC. Bill Gates bought QDOS (Quick and
Dirty Operating System), a clone of CP/M that its programmer Tim Paterson had thrown together in six weeks,
from Paterson's employer Seattle Computer Products. Gates, concealing the IBM deal from Paterson and SCP,
bought the rights for $50,000. He then talked IBM into allowing Microsoft to market MS-DOS separately from the
PC hardware. Over the next decade, leveraging code he didn't write made Bill Gates a multibillionaire, and
business tactics even sharper than the original deal gained Microsoft a monopoly lock on desktop computing.
XENIX as aproduct was rapidly deep-sixed, and eventually sold to SCO.

It was not apparent at the time how successful (or how destructive) Microsoft was going to be. Since the IBM PC-1
didn't have the hardware capacity to run Unix, Unix people barely noticed it at all (though, ironically enough, DOS
2.0 eclipsed CP/M largely because Microsoft's co-founder Paul Allen merged in Unix features including
subdirectories and pipes). There were things that seemed much more interesting going on — like the 1982
launching of Sun Microsystems.

Sun Microsystems founders Bill Joy, Andreas Bechtolsheim, and Vinod Khosla set out to build a dream Unix
machine with built-in networking capability. They combined hardware designed at Stanford with the Unix
developed at Berkeley to produce a smashing success, and founded the workstation industry. At the time, nobody
much minded watching source-code access to one branch of the Unix tree gradually dry up as Sun began to behave
less like afreewheeling startup and more like a conventional firm. Berkeley was still distributing BSD with source
code. Officially, System Il source licenses cost $40,000 each; but Bell Labs was turning a blind eye to the number
of bootleg Bell Labs Unix tapesin circulation, the universities were still swapping code with Bell Labs, and it
looked like Sun's commercialization of Unix might just be the best thing to happen to it yet.

1982 was also the year that C first showed signs of establishing itself outside the Unix world as the systems-
programming language of choice. It would only take about five years for C to drive machine assemblers almost
completely out of use. By the early 1990s C and C++ would dominate not only systems but application



programming; by the late 1990s all other conventional compiled languages would be effectively obsolete.

When DEC canceled development on the PDP-10's successor machine (Jupiter) in 1983, VAXes running Unix
began to take over as the dominant Internet machines, a position they would hold until being displaced by Sun
workstations. By 1985, about 25% of all VAXeswould be running Unix despite DEC's tiff opposition. But the
longest-term effect of the Jupiter cancellation was a less obvious one; the death of the MIT Al Lab's PDP-10-
centered hacker culture motivated a programmer named Richard Stallman to begin writing GNU, a complete free
clone of Unix.

By 1983 there were no fewer than six Unix-workalike operating systems for the IBM-PC: uNETix, Venix,
Coherent, QNX, Idris, and the port hosted on the Sritek PC daughtercard. There was still no port of Unix in either
the System V or BSD versions; both groups considered the 8086 microprocessor woefully underpowered and
wouldn't go near it. None of the Unix-workalikes were significant as commercial successes, but they indicated a
significant demand for Unix on cheap hardware that the major vendors were not supplying. No individual could
afford to meet it, either, not with the $40,000 price-tag on a source-code license.

Sun was aready a success (with imitators!) when, in 1983, the U.S. Department of Justice won its second antitrust
case against AT& T and broke up the Bell System. Thisrelieved AT& T from the 1958 consent decree that had
prevented them from turning Unix into a product. AT& T promptly rushed to commercialize Unix System V—a
move that nearly killed Unix.

So true. But their marketing did spread Unix internationally.
-- Ken Thompson

Most Unix boosters thought that the divestiture was great news. We thought we saw in the post-divestiture AT& T,
Sun Microsystems, and Sun's smaller imitators the nucleus of a healthy Unix industry — one that, using
inexpensive 68000-based workstations, would challenge and eventually break the oppressive monopoly that then
loomed over the computer industry — IBM's.

What none of usrealized at the time was that the productization of Unix would destroy the free exchanges of
source code that had nurtured so much of the system's early vitality. Knowing no other model than secrecy for
collecting profits from software and no other model than centralized control for developing a commercia product,
AT&T clamped down hard on source-code distribution. Bootleg Unix tapes became far less interesting in the
knowledge that the threat of lawsuit might come with them. Contributions from universities began to dry up.

To make matters worse, the big new playersin the Unix market promptly committed major strategic blunders. One
was to seek advantage by product differentiation — atactic which resulted in the interfaces of different Unixes
diverging. Thisthrew away cross-platform compatibility and fragmented the Unix market.

The other, subtler error was to behave asif personal computers and Microsoft wereirrelevant to Unix's prospects.
Sun Microsystems failed to see that commoditized PCs would inevitably become an attack on its workstation
market from below. AT&T, fixated on minicomputers and mainframes, tried several different strategies to become
amajor player in computers, and badly botched al of them. A dozen small companies formed to support Unix on
PCs; all were underfunded, focused on selling to devel opers and engineers, and never aimed at the business and
home market that Microsoft was targeting.

In fact, for years after divestiture the Unix community was preoccupied with the first phase of the Unix wars — an
internal dispute, the rivalry between System V Unix and BSD Unix. The dispute had several levels, some technical
(sockets vs. streams, BSD tty vs. System V termio) and some cultural. The divide was roughly between longhairs
and shorthairs; programmers and technical people tended to line up with Berkeley and BSD, more business-
oriented types with AT& T and System V. The longhairs, repeating atheme from Unix's early daysten years



before, liked to see themselves as rebels against a corporate empire; one of the small companies put out a poster
showing an X-wing-like space fighter marked “BSD” speeding away from ahuge AT&T ‘death star’ logo left
broken and in flames. Thus we fiddled while Rome burned.

But something else happened in the year of the AT& T divestiture that would have more long-term importance for
Unix. A programmer/linguist named Larry Wall quietly invented the patch(1) utility. The patch program, asimple
tool that applies changebars generated by diff(1) to a base file, meant that Unix developers could cooperate by
passing around patch sets — incremental changes to code — rather than entire code files. This was important not
only because patches are less bulky than full files, but because patches would often apply cleanly even if much of
the base file had changed since the patch-sender fetched his copy. With thistool, streams of development on a
common source-code base could diverge, run in parallel, and re-converge. The patch program did more than any
other single tool to enable collaborative development over the Internet — a method that would revitalize Unix after
1990.

In 1985 Intel shipped the first 386 chip, capable of addressing 4 gigabytes of memory with aflat address space.
The clumsy segment addressing of the 8086 and 286 became immediately obsolete. This was big news, because it
meant that for the first time, a microprocessor in the dominant Intel family had the capability to run Unix without
painful compromises. The handwriting was on the wall for Sun and the other workstation makers. They failed to
seeit.

1985 was also the year that Richard Stallman issued the GNU manifesto [Stallman] and launched the Free Software

Foundation. Very few people took him or his GNU project seriously, ajudgment that turned out to be seriously
mistaken. In an unrelated devel opment of the same year, the originators of the X window system released it as
source code without royalties, restrictions, or license code. As adirect result of this decision, it became a safe
neutral areafor collaboration between Unix vendors, and defeated proprietary contenders to become Unix's
graphics engine.

Serious standardization efforts aimed at reconciling the System V and Berkeley APIs also began in 1983 with the /
usr/group standard. This was followed in 1985 by the POSI X standards, an effort backed by the IEEE. These
described the intersection set of the BSD and SVR3 (System V Release 3) calls, with the superior Berkeley signal
handling and job control but with SVR3 terminal control. All later Unix standards would incorporate POSIX at
their core, and later Unixes would adhereto it closely. The only major addition to the modern Unix kernel API to
come afterwards was BSD sockets.

In 1986 Larry Wall, previously the inventor of patch(1), began work on Perl, which would become the first and
most widely used of the open-source scripting languages. In early 1987 the first version of the GNU C compiler
appeared, and by the end of 1987 the core of the GNU toolset was falling into place: editor, compiler, debugger,
and other basic development tools. Meanwhile, the X windowing system was beginning to show up on relatively
inexpensive workstations. Together, these would provide the armature for the open-source Unix devel opments of
the 1990s.

1986 was also the year that PC technology broke free of IBM's grip. IBM, still trying to preserve a price-vs.-power
curve across its product line that would favor its high-margin mainframe business, rejected the 386 for most of its
new line of PS/2 computersin favor of the weaker 286. The PS/2 series, designed around a proprietary bus

architecture to lock out clonemakers, became a colossally expensive fail ure.1] Compag, the most aggressive of
the clonemakers, trumped IBM's move by releasing the first 386 machine. Even with a clock speed of a mere 16
MHz, the 386 made a tolerable Unix machine. It was the first PC of which that could be said.

It was beginning to be possible to imagine that Stallman's GNU project might mate with 386 machines to produce
Unix workstations ailmost an order of magnitude less costly than anyone was offering. Curiously, no one seemsto
have actually got thisfar in their thinking. Most Unix programmers, coming from the minicomputer and



workstation worlds, continued to disdain cheap 80x86 machines in favor of more elegant 68000-based designs.
And, though alot of programmers contributed to the GNU project, among Unix people it tended to be considered a
guixotic gesture that was unlikely to have near-term practical consequences.

The Unix community had never lost its rebel streak. But in retrospect, we were nearly as blind to the future bearing
downonusasIBM or AT&T. Not even Richard Stallman, who had declared amoral crusade against proprietary
software afew years before, really understood how badly the productization of Unix had damaged the community
around it; his concerns were with more abstract and long-term issues. The rest of us kept hoping that some clever
variation on the corporate formula would solve the problems of fragmentation, wretched marketing, and strategic
drift, and redeem Unix's pre-divestiture promise. But worse was still to come.

1988 was the year Ken Olsen (CEO of DEC) famously described Unix as “snake oil”. DEC had been shipping its
own variant of Unix on PDP-11s since 1982, but really wanted the business to go to its proprietary VMS operating
system. DEC and the minicomputer industry were in deep trouble, swamped by waves of powerful low-cost
machines coming out of Sun Microsystems and the rest of the workstation vendors. Most of those workstations ran
Unix.

But the Unix industry's own problems were growing more severe. In 1988 AT& T took a 20% stake in Sun
Microsystems. These two companies, the leaders in the Unix market, were beginning to wake up to the threat posed
by PCs, IBM, and Microsoft, and to realize that the preceding five years of bloodletting had gained them little. The
AT&T/Sun dliance and the development of technical standards around POSIX eventually healed the breach
between the System V and BSD Unix lines. But the second phase of the Unix wars began when the second-tier
vendors (IBM, DEC, Hewlett-Packard, and others) formed the Open Software Foundation and lined up against the
AT&T/Sun axis (represented by Unix International). More rounds of Unix fighting Unix ensued.

Meanwhile, Microsoft was making billions in the home and small-business markets that the warring Unix factions
had never found the will to address. The 1990 release of Windows 3.0 — the first successful graphical operating
system from Redmond — cemented Microsoft's dominance, and created the conditions that would allow them to
flatten and monopolize the market for desktop applications in the 1990s.

The years from 1989 to 1993 were the darkest in Unix's history. It appeared then that all the Unix community's
dreams had failed. Internecine warfare had reduced the proprietary Unix industry to a squabbling shambles that
never summoned either the determination or the capability to challenge Microsoft. The elegant Motorola chips
favored by most Unix programmers had lost out to Intel's ugly but inexpensive processors. The GNU project failed
to produce the free Unix kernel it had been promising since 1985, and after years of excusesiits credibility was
beginning to wear thin. PC technology was being relentlessly corporatized. The pioneering Unix hackers of the
1970s were hitting middle age and slowing down. Hardware was getting cheaper, but Unix was still too expensive.
We were belatedly becoming aware that the old monopoly of IBM had yielded to a newer monopoly of Microsoft,
and Microsoft's mal-engineered software was rising around us like a tide of sewage.

Blows against the Empire: 1991-1995

The first glimmer of light in the darkness was the 1990 effort by William Jolitz to port BSD onto a 386 box,
publicized by a series of magazine articles beginning in 1991. The 386BSD port was possible because, partly
influenced by Stallman, Berkeley hacker Keith Bostic had begun an effort to clean AT& T proprietary code out of
the BSD sourcesin 1988. But the 386BSD project took a severe blow when, near the end of 1991, Jolitz walked
away from it and destroyed his own work. There are conflicting explanations, but acommon thread in al is that
Jolitz wanted his code to be released as unencumbered source and was upset when the corporate sponsors of the
project opted for amore proprietary licensing model.

In August 1991 Linus Torvalds, then an unknown university student from Finland, announced the Linux project.



Torvaldsis on record that one of his main motivations was the high cost of Sun's Unix at his university. Torvalds
has also said that he would have joined the BSD effort had he known of it, rather than founding his own. But
386BSD was not shipped until early 1992, some months after the first Linux release.

The importance of both these projects became clear only in retrospect. At the time, they attracted little notice even
within the Internet hacker culture — let alone in the wider Unix community, which was still fixated on more
capable machines than PCs, and on trying to reconcile the special properties of Unix with the conventional
proprietary model of a software business.

It would take another two years and the great Internet explosion of 1993-1994 before the true importance of Linux
and the open-source BSD distributions became evident to the rest of the Unix world. Unfortunately for the BSDers,
an AT&T lawsuit against BSDI (the startup company that had backed the Jolitz port) consumed much of that time
and motivated some key Berkeley developers to switch to Linux.

Code copying and theft of trade secrets was alleged. The actual infringing code was not
identified for nearly two years. The lawsuit could have dragged on for much longer but for
the fact that Novell bought USL from AT& T and sought a settlement. In the end, threefiles
were removed from the 18,000 that made up the distribution, and a number of minor
changes were made to other files. In addition, the University agreed to add USL copyrights
to about 70 files, with the stipulation that those files continued to be freely redistributed.

-- Marshall Kirk McKusick

The settlement set an important precedent by freeing an entire working Unix from proprietary control, but its
effects on BSD itself were dire. Matters were not helped when, in 1992-1994, the Computer Science Research
Group at Berkeley shut down; afterwards, factional warfare within the BSD community split it into three
competing development efforts. Asaresult, the BSD lineage lagged behind Linux at a crucial time and lost to it the
lead position in the Unix community.

The Linux and BSD devel opment efforts were native to the Internet in away previous Unixes had not been. They
relied on distributed development and Larry Wall's patch(1) tool, and recruited devel opers via email and through
Usenet newsgroups. Accordingly, they got a tremendous boost when Internet Service Provider businesses began to
proliferate in 1993, enabled by changes in telecomm technology and the privatization of the Internet backbone that
are outside the scope of this history. The demand for cheap Internet was created by something else: the 1991
invention of the World Wide Web. The Web was the “killer app” of the Internet, the graphical user interface
technology that made it irresistible to a huge population of nontechnical end users.

The mass-marketing of the Internet both increased the pool of potential developers and lowered the transaction
costs of distributed development. The results were reflected in efforts like X Free86, which used the Internet-centric
model to build a more effective development organization than that of the official X Consortium. The first X Free386
in 1992 gave Linux and the BSDs the graphical-user-interface engine they had been missing. Over the next decade
XFree86 would lead in X development, and an increasing portion of the X Consortium's activity would come to
consist of funneling innovations originated in the XFree86 community back to the Consortium's industrial sponsors.

By late 1993, Linux had both Internet capability and X. The entire GNU toolkit had been hosted on it from the
beginning, providing high-quality development tools. Beyond GNU tools, Linux acted as abasin of attraction,
collecting and concentrating twenty years of open-source software that had previously been scattered across a
dozen different proprietary Unix platforms. Though the Linux kernel was still officially in beta (at 0.99 level), it
was remarkably crash-free. The breadth and quality of the software in Linux distributions was aready that of a
production-ready operating system.

A few of the more flexible-minded among old-school Unix developers began to notice that the long-awaited dream
of acheap Unix system for everybody had snuck up on them from an unexpected direction. It didn't come from



AT&T or Sun or any of the traditional vendors. Nor did it rise out of an organized effort in academia. It wasa
bricolage that bubbled up out of the Internet by what seemed like spontaneous generation, appropriating and
recombining elements of the Unix tradition in surprising ways.

Elsewhere, corporate maneuvering continued. AT& T divested itsinterest in Sun in 1992; then sold its Unix
Systems Laboratories to Novell in 1993; Novell handed off the Unix trademark to the X/Open standards group in
1994; AT&T and Novell joined OSF in 1994, finally ending the Unix wars. In 1995 SCO bought UnixWare (and
the rights to the original Unix sources) from Novell. In 1996, X/Open and OSF merged, creating one big Unix
standards group.

But the conventional Unix vendors and the wreckage of their wars came to seem steadily less and less relevant.
The action and energy in the Unix community were shifting to Linux and BSD and the open-source developers. By
thetime IBM, Intel, and SCO announced the Monterey project in 1998 — alast-gasp attempt to merge One Big
System out of all the proprietary Unixes left standing — developers and the trade press reacted with amusement,
and the project was abruptly canceled in 2001 after three years of going nowhere.

The industry transition could not be said to have completed until 2000, when SCO sold UnixWare and the original
Unix source-code base to Caldera— a Linux distributor. But after 1995, the story of Unix became the story of the
open-source movement. There's another side to that story; to tell it, we'll need to return to 1961 and the origins of
the Internet hacker culture.

23 Ken Thompson reminded me that today's cellphones have more RAM than the PDP-7 had RAM and disk
storage combined; alarge disk, in those days, was less than a megabyte of storage.

(4 ThereisaWeb FAQ on the PDP computers that explains the otherwise extremely obscure PDP-7's placein
history.

[13 The version 7 manuals can be browsed on-line at http://plan9.bell-Iabs.com/7thEdMan/index.htm.

[18 UUCP was hot stuff when a fast modem was 300 baud.

(271 The PS/2 did, however, leave one mark on later PCs — they made the mouse a standard peripheral, which is
why the mouse connector on the back of your chassisis caled a“PS/2 port”.
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Origins and History of the Hackers, 1961-1995

The Unix tradition is an implicit culture that has always carried with it more than just a bag of
technical tricks. It transmits a set of values about beauty and good design; it has legends and folk
heroes. Intertwined with the history of the Unix tradition is another implicit culture that is more
difficult to label neatly. It hasits own values and legends and folk heroes, partly overlapping with
those of the Unix tradition and partly derived from other sources. It has most often been called the
“hacker culture”, and since 1998 has largely coincided with what the computer trade press calls “the
open source movement”.

The relationships between the Unix tradition, the hacker culture, and the open-source movement are
subtle and complex. They are not ssmplified by the fact that all three implicit cultures have frequently
been expressed in the behaviors of the same human beings. But since 1990 the story of Unix is
largely the story of how the open-source hackers changed the rules and seized the initiative from the
old-line proprietary Unix vendors. Therefore, the other half of the history behind today's Unix isthe
history of the hackers.

At Play in the Groves of Academe: 1961-1980

The roots of the hacker culture can be traced back to 1961, the year MIT took delivery of itsfirst
PDP-1 minicomputer. The PDP-1 was one of the earliest interactive computers, and (unlike other
machines) of the day was inexpensive enough that time on it did not have to be rigidly scheduled. It
attracted a group of curious students from the Tech Model Railroad Club who experimented with it in
aspirit of fun. Hackers: Heroes of the Computer Revolution [Levy] entertainingly describes the early

days of the club. Their most famous achievement was SPACEWAR, a game of dueling rocketships
loosely inspired by the Lensman space operas of E.E. “Doc” Smith.[2]

Several of the TMRC experimenters later went on to become core members of the MIT Avrtificia
Intelligence Lab, which in the 1960s and 1970s became one of the world centers of cutting-edge
computer science. They took some of TMRC's slang and in-jokes with them, including a tradition of
elaborate (but harmless) pranks called “hacks’. The Al Lab programmers appear to have been the
first to describe themselves as “hackers’.

After 1969 the MIT Al Lab was connected, viathe early ARPANET, to other leading computer
science research laboratories at Stanford, Bolt Beranek & Newman, Carnegie-Mellon University and
elsawhere. Researchers and students got the first foretaste of the way fast network access abolishes
geography, often making it easier to collaborate and form friendships with distant people on the net
than it would be to do likewise with colleagues closer-by but less connected.

Software, ideas, slang, and a good deal of humor flowed over the experimental ARPANET links.



Something like a shared culture began to form. One of its earliest and most enduring artifacts was the
Jargon File, alist of shared slang terms that originated at Stanford in 1973 and went through several
revisions at MIT after 1976. Along the way it accumulated slang from CMU, Y ale, and other
ARPANET sites.

Technically, the early hacker culture was largely hosted on PDP-10 minicomputers. They used a
variety of operating systems that have since passed into history: TOPS-10, TOPS-20, Multics, ITS,
SAIL. They programmed in assembler and dialects of Lisp. PDP-10 hackers took over running the
ARPANET itself because nobody else wanted the job. Later, they became the founding cadre of the
Internet Engineering Task Force (IETF) and originated the tradition of standardization through
Requests For Comment (RFCs).

Socialy, they were young, exceptionally bright, almost entirely male, dedicated to programming to
the point of addiction, and tended to have streaks of stubborn nonconformism — what years later
would be called * geeks'. They, too, tended to be shaggy hippies and hippie-wannabes. They, too, had
avision of computers as community-building devices. They read Robert Heinlein and

J. R. R. Tolkien, played in the Society for Creative Anachronism, and tended to have a weakness for
puns. Despite their quirks (or perhaps because of them!) many of them were among the brightest
programmers in the world.

They were not Unix programmers. The early Unix community was drawn largely from the same pool
of geeksin academia and government or commercial research laboratories, but the two cultures
differed in important ways. One that we've aready touched on is the weak networking of early Unix.
There was effectively no Unix-based ARPANET access until after 1980, and it was uncommon for
any individual to have afoot in both camps.

Collaborative development and the sharing of source code was a valued tactic for Unix programmers.
To the early ARPANET hackers, on the other hand, it was more than atactic: it was something rather
closer to ashared religion, partly arising from the academic “publish or perish” imperative and (in its
more extreme versions) developing into an amost Chardinist idealism about networked communities
of minds. The most famous of these hackers, Richard M. Stallman, became the ascetic saint of that
religion.

Internet Fusion and the Free Software Movement: 1981-1991

After 1983 and the BSD port of TCP/IP, the Unix and ARPANET cultures began to fuse together.
Thiswas anatural development once the communication links were in place, since both cultures were
composed of the same kind of people (indeed, in afew but significant cases the same people).
ARPANET hackers learned C and began to speak the jargon of pipes, filters, and shells; Unix
programmers learned TCP/IP and started to call each other “hackers’. The process of fusion was
accelerated after the Project Jupiter cancellation in 1983 killed the PDP-10's future. By 1987 the two
cultures had merged so completely that most hackers programmed in C and casually used slang terms
that went back to the Tech Model Railroad Club of twenty-five years earlier.

(In 1979 | was unusual in having strong ties to both the Unix and ARPANET cultures. In 1985 that



was no longer unusual. By the time | expanded the old ARPANET Jargon File into the New Hacker's
Dictionary [Raymond96] in 1991, the two cultures had effectively fused. The Jargon File, born on the

ARPANET but revised on Usenet, aptly symbolized the merger.)

But TCP/IP networking and slang were not the only things the post-1980 hacker culture inherited
from its ARPANET roots. It also got Richard Stallman, and Stallman's moral crusade.

Richard M. Stallman (generally known by hislogin name, RMS) had already proved by the late
1970s that he was one of the most able programmers alive. Among his many inventions was the
Emacs editor. For RM S, the Jupiter cancellation in 1983 only finished off a disintegration of the MIT
Al Lab culture that had begun a few years earlier as many of its best went off to help run competing
Lisp-machine companies. RM S felt gjected from a hacker Eden, and decided that proprietary
software was to blame.

In 1983 Stallman founded the GNU project, aimed at writing an entire free operating system. Though
Stallman was not and had never been a Unix programmer, under post-1980 conditions implementing
a Unix-like operating system became the obvious strategy to pursue. Most of RMS's early
contributors were old-time ARPANET hackers newly decanted into Unix-land, in whom the ethos of
code-sharing ran rather stronger than it did among those with a more Unix-centered background.

In 1985, RM S published the GNU Manifesto. In it he consciously created an ideology out of the
values of the pre-1980 ARPANET hackers — complete with a novel ethico-political claim, a self-
contained and characteristic discourse, and an activist plan for change. RMS aimed to knit the diffuse
post-1980 community of hackersinto a coherent social machine for achieving a single revolutionary
purpose. His behavior and rhetoric half-consciously echoed Karl Marx's attempts to mobilize the
industrial proletariat against the alienation of their work.

RMS's manifesto ignited a debate that is still live in the hacker culture today. His program went way
beyond maintaining a codebase, and essentially implied the abolition of intellectual-property rightsin
software. In pursuit of thisgoal, RM S popularized the term “free software”, which was the first
attempt to label the product of the entire hacker culture. He wrote the General Public License (GPL),
which was to become both arallying point and a focus of great controversy, for reasons we will
examine in Chapter 16. Y ou can learn more about RMS's position and the Free Software Foundation

at the GNU website.

The term “free software” was partly a description and partly an attempt to define a cultural identity
for hackers. On one level, it was quite successful. Before RMS, people in the hacker culture
recognized each other as fellow-travelers and used the same slang, but nobody bothered arguing
about what a‘hacker’ is or should be. After him, the hacker culture became much more self-
conscious; value disputes (often framed in RM S's language even by those who opposed his
conclusions) became a normal feature of debate. RM S, a charismatic and polarizing figure, himself
became so much a culture hero that by the year 2000 he could hardly be distinguished from his
legend. Free asin Freedom [Williams] gives us an excellent portrait.

RMS's arguments influenced the behavior even of many hackers who remained skeptical of his



theories. In 1987, he persuaded the caretakers of BSD Unix that cleaning out AT& T's proprietary
code so they could release an unencumbered version would be a good idea. However, despite his
determined efforts over more than fifteen years, the post-1980 hacker culture never unified around his
ideological vision.

Other hackers were rediscovering open, collaborative development without secrets for more
pragmatic, lessideological reasons. A few buildings away from Richard Stallman's Sth-floor office at
MIT, the X development team thrived during the late 1980s. It was funded by Unix vendors who had
argued each other to adraw over the control and intellectual -property-rights issues surrounding the X
windowing system, and saw no better alternative than to leave it free to everyone. In 1987-1988 the
X development prefigured the really huge distributed communities that would redefine the leading
edge of Unix five years later.

X was one of the first large-scale open-source projects to be developed by a
disparate team of individuals working for different organizations spread across
the globe. E-mail allowed ideas to move rapidly among the group so that issues
could be resolved as quickly as necessary, and each individual could contribute
in whatever capacity suited them best. Software updates could be distributed in a
matter of hours, enabling every site to act in a concerted manner during
development. The net changed the way software could be devel oped.

-- Keith Packard

The X developers were no partisans of the GNU master plan, but they weren't actively opposed to it,
either. Before 1995 the most serious opposition to the GNU plan came from the BSD developers. The
BSD people, who remembered that they had been writing freely redistributable and modifiable
software years before RM S's manifesto, rejected GNU's claim to historical and ideological primacy.
They specifically objected to the infectious or “viral” property of the GPL, holding out the BSD
license as being “more free” because it placed fewer restrictions on the reuse of code.

It did not help RM S's case that, although his Free Software Foundation had produced most of the rest
of afull software toolkit, it failed to deliver the central piece. Ten years after the founding of the
GNU project, there was still no GNU kernel. While individual tools like Emacs and GCC proved
tremendoudly useful, GNU without akernel neither threatened the hegemony of proprietary Unixes
nor offered an effective counter to the rising problem of the Microsoft monopoly.

After 1995 the debate over RM S's ideology took a somewnhat different turn. Opposition to it became
closely associated with both Linus Torvalds and the author of this book.

Linux and the Pragmatist Reaction: 1991-1998

Even asthe HURD (the GNU kernel) effort was stalling, new possibilities were opening up. In the
early 1990s the combination of cheap, powerful PCs with easy Internet access proved a powerful lure
for a new generation of young programmers looking for challenges to test their mettle. The user-
space toolkit written by the Free Software Foundation suggested a way forward that was free of the
high cost of proprietary software development tools. Ideology followed economics rather than



leading the charge; some of the newbies signed up with RMS's crusade and adopted the GPL as their
banner, and others identified more with the Unix tradition as awhole and joined the anti-GPL camp,
but most dismissed the whole dispute as a distraction and just wrote code.

Linus Torvalds neatly straddled the GPL/anti-GPL divide by using the GNU toolkit to surround the
Linux kernel he had invented and the GPL's infectious properties to protect it, but rejecting the
ideological program that went with RMS'slicense. Torvalds affirmed that he thought free software
better in general but occasionally used proprietary programs. Hisrefusal to be a zealot even in his
own cause made him tremendously attractive to the majority of hackers who had been uncomfortable
with RMS's rhetoric, but had lacked any focus or convincing spokesperson for their skepticism.

Torvalds's cheerful pragmatism and adept but low-key style catalyzed an astonishing string of
victories for the hacker culture in the years 1993-1997, including not merely technical successes but
the solid beginnings of a distribution, service, and support industry around the Linux operating
system. As aresult his prestige and influence skyrocketed. Torvalds became a hero on Internet time;
by 1995, he had achieved in just four years the kind of culture-wide eminence that RM S had required
fifteen years to earn — and far exceeded Stallman's record at selling “free software” to the outside
world. By contrast with Torvalds, RMS's rhetoric began to seem both strident and unsuccessful.

Between 1991 and 1995 Linux went from a proof-of-concept surrounding an 0.1 prototype kernel to
an operating system that could compete on features and performance with proprietary Unixes, and
beat most of them on important statistics like continuous uptime. In 1995, Linux found its killer app:
Apache, the open-source webserver. Like Linux, Apache proved remarkably stable and efficient.
Linux machines running Apache quickly became the platform of choice for |SPs worldwide; Apache

captured about 60% of websi tes,[E] handily beating out both of its major proprietary competitors.

The one thing Torvalds did not offer was a new ideology — anew rationale or generative myth of
hacking, and a positive discourse to replace RM S's hostility to intellectual property with a program
more attractive to people both within and outside the hacker culture. | inadvertently supplied this lack
in 1997 as aresult of trying to understand why Linux's development had not collapsed in confusion
years before. The technical conclusions of my published papers [Raymond01] will be summarized in

Chapter 19. For this historical sketch, it will be sufficient to note the impact of the first one's central
formula: “ Given a sufficiently large number of eyeballs, all bugs are shallow”.

This observation implied something nobody in the hacker culture had dared to really believe in the
preceding quarter-century: that its methods could reliably produce software that was not just more
elegant but more reliable and better than our proprietary competitors code. This consequence, quite
unexpectedly, turned out to present exactly the direct challenge to the discourse of “free software”
that Torvalds himself had never been interested in mounting. For most hackers and aimost all
nonhackers, “ Free software because it works better” easily trumped “ Free software because all
software should be free”.

The paper's contrast between ‘ cathedral’ (centralized, closed, controlled, secretive) and
‘bazaar’ (decentralized, open, peer-review-intensive) modes of development became a central
metaphor in the new thinking. In an important sense this was merely areturn to Unix's pre-divestiture



roots — it is continuous with Mcllroy's 1991 observations about the positive effects of peer pressure
on Unix development in the early 1970s and Dennis Ritchie's 1979 reflections on fellowship, cross-
fertilized with the early ARPANET's academic tradition of peer review and with its idealism about
distributed communities of mind.

In early 1998, the new thinking hel ped motivate Netscape Communications to release the source code
of its Mozilla browser. The press attention surrounding that event took Linux to Wall Street, helped
drive the technol ogy-stock boom of 1999-2001, and proved to be a turning point in both the history
of the hacker culture and of Unix.

[18] SPACEWAR was not related to Ken Thompson's Space Travel game, other than by the fact that
both appealed to science-fiction fans.

(29 Current and historical webserver share figures are available at the monthly Netcraft Web Server
Survey.
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The Open-Source Movement: 1998 and Onward

By the time of the Mozillarelease in 1998, the hacker community could best be analyzed as aloose
collection of factions or tribes that included Richard Stallman's Free Software Movement, the Linux
community, the Perl community, the Apache community, the BSD community, the X developers, the
Internet Engineering Task Force (IETF), and at least a dozen others. These factions overlap, and an
individual developer would be quite likely to be affiliated with two or more.

A tribe might be grouped around a particular codebase that they maintain, or around one or more
charismatic influence leaders, or around alanguage or development tool, or around a particular
software license, or around atechnical standard, or around a caretaker organization for some part of
the infrastructure. Prestige tends to correlate with longevity and historical contribution as well as
more obvious drivers like current market-share and mind-share; thus, perhaps the most universally
respected of thetribesisthe IETF, which can claim continuity back to the beginnings of the
ARPANET in 1969. The BSD community, with continuous traditions back to the late 1970s,
commands considerabl e prestige despite having a much lower installation count than Linux.
Stallman's Free Software Movement, dating back to the early 1980s, ranks among the senior tribes
both on historical contribution and as the maintainer of several of the software toolsin heaviest day-
to-day use.

After 1995 Linux acquired a special role as both the unifying platform for most of the community's
other software and the hackers' most publicly recognizable brand name. The Linux community
showed a corresponding tendency to absorb other sub-tribes — and, for that matter, to co-opt and
absorb the hacker factions associated with proprietary Unixes. The hacker culture as awhole began to
draw together around a common mission: push Linux and the bazaar development model asfar asit
could go.

Because the post-1980 hacker culture had become so deeply rooted in Unix, the new mission was
implicitly abrief for the triumph of the Unix tradition. Many of the hacker community's senior
leaders were also Unix old-timers, still bearing scars from the post-divestiture civil wars of the 1980s
and getting behind Linux asthe last, best hope to fulfill the rebel dreams of the early Unix days.

The Mozillarelease helped further concentrate opinions. In March of 1998 an unprecedented summit
meeting of community influence leaders representing amost all of the major tribes convened to
consider common goals and tactics. That meeting adopted a new label for the common devel opment
method of all the factions: open source.

Within six months almost al the tribes in the hacker community would accept “ open source” asits
new banner. Older groups like IETF and the BSD developers would begin to apply it retrospectively
to what they had been doing all along. In fact, by 2000 the rhetoric of open source would not just
unify the hacker culture's present practice and plans for the future, but re-color its view of its own



past.

The galvanizing effect of the Netscape announcement, and of the new prominence of Linux, reached
well beyond the Unix community and the hacker culture. Beginning in 1995, devel opers from various
platformsin the path of Microsoft's Windows juggernaut (MacOS; Amiga; OS/2; DOS; CP/M; the
weaker proprietary Unixes; various mainframe, minicomputer, and obsolete microcomputer operating
systems) had banded together around Sun Microsystems's Java language. Many disgruntled Windows
developers joined them in hopes of maintaining at least some nominal independence from Microsoft.
But Sun's handling of Java was (as we discuss in Chapter 14) clumsy and alienating on several levels.

Many Java developers liked what they saw in the nascent open-source movement, and followed
Netscape's lead into Linux and open source just as they had previously followed Netscape into Java.

Open-source activists welcomed the surge of immigrants from everywhere. The old Unix hands
began to share the new immigrants dreams of not merely passively out-enduring the Microsoft
monopoly, but actually reclaiming key markets from it. The open-source community as awhole
prepared a maor push for mainstream respectability, and began to welcome alliances with major
corporations that increasingly feared losing control of their own businesses as Microsoft's lock-in
tactics grew ever bolder.

There was one exception: Richard Stallman and the Free Software Movement. “Open source” was
explicitly intended to replace Stallman's preferred “free software” with apublic label that was
ideologically neutral, acceptable both to historically opposed groups like the BSD hackers and those
who did not wish to take a position in the GPL/anti-GPL debate. Stallman flirted with adopting the
term, then rgjected it on the grounds that it failed to represent the moral position that was central to
his thinking. The Free Software Movement has since insisted on its separateness from “open source”,
creating perhaps the most significant political fissure in the hacker culture of 2003.

The other (and more important) intention behind “open source” was to present the hacker
community's methods to the rest of the world (especially the business mainstream) in a more market-
friendly, less confrontational way. In thisrole, fortunately, it proved an unqualified success — and
led to arevival of interest in the Unix tradition from which it sprang.
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The Lessons of Unix History

The largest-scale pattern in the history of Unix isthis: when and where Unix has adhered most
closely to open-source practices, it has prospered. Attempts to proprietarize it have invariably
resulted in stagnation and decline.

In retrospect, this should probably have become obvious much sooner than it did. We lost ten years
after 1984 learning our lesson, and it would probably serve us very ill to ever again forget it.

Being smarter than anyone else about important but narrow issues of software design didn't prevent
us from being almost completely blind about the consequences of interactions between technology
and economics that were happening right under our noses. Even the most perceptive and forward-
looking thinkers in the Unix community were at best half-sighted. The lesson for the future is that
over-committing to any one technology or business model would be a mistake — and maintaining the
adaptive flexibility of our software and the design tradition that goes with it is correspondingly
imperative.

Another lesson isthis. Never bet against the cheap plastic solution. Or, equivaently, the low-end/
high-volume hardware technology almost always ends up climbing the power curve and winning.
The economist Clayton Christensen calls this disruptive technology and showed in The Innovator's
Dilemma [Christensen] how this happened with disk drives, steam shovels, and motorcycles. We saw
it happen as minicomputers displaced mainframes, workstations and servers replaced minis, and
commodity Intel machines replaced workstations and servers. The open-source movement iswinning
by commoditizing software. To prosper, Unix needs to maintain the knack of co-opting the cheap
plastic solution rather than trying to fight it.

Finally, the old-school Unix community failed in its efforts to be “professiona” by welcoming in all
the command machinery of conventional corporate organization, finance, and marketing. We had to
be rescued from our folly by arebel alliance of obsessive geeks and creative misfits—who then
proceeded to show us that professionalism and dedication really meant what we had been doing
before we succumbed to the mundane persuasions of “sound business practices’.

The application of these lessons with respect to software technologies other than Unix isleft asan
easy exercise for the reader.
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Comparing the Unix Philosophy with Others
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What Goes Around, Comes Around

If you have any trouble sounding condescending, find a Unix user to show you how it's done.
-- Scott Adams Dilbert newsletter 3.0, 1994

The design of operating systems conditions the style of software development under them in many
ways both obvious and subtle. Much of this book traces connections between the design of the Unix
operating system and the philosophy of program design that has evolved around it. For contrast, it
will therefore be instructive to compare the classic Unix way with the styles of design and
programming native to other major operating systems.
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The Elements of Operating-System Style

Before we can start discussing specific operating systems, we'll need an organizing framework for the
ways that operating-system design can affect programming style for good or ill.

Overadl, the design and programming styles associated with different operating systems seem to
derive from three different sources: (@) the intentions of the operating-system designers, (b)
uniformities forced on designs by costs and limitations in the programming environment, and (c)
random cultural drift, early practices becoming traditional ssmply because they were there first.

Even if we take it as given that there is some random cultural drift in every operating-system
community, considering the intentions of the designers and the costs and limitations of the results
does reveal some interesting patterns that can help us understand the Unix style better by contrast.
We can make the patterns explicit by analyzing some of the most important ways that operating
systems differ.

What Is the Operating System's Unifying Idea?

Unix has a couple of unifying ideas or metaphors that shape its APIs and the development style that
proceeds from them. The most important of these are probably the “everything isafile’ model and

the pipe metaphor[@] built on top of it. In general, development style under any given operating
system is strongly conditioned by the unifying ideas baked into the system by its designers — they
percolate upwards into applications programming from the models provided by system tools and
APIs.

Accordingly, the most basic question to ask in contrasting Unix with another operating systemiis:
Doesit have unifying ideas that shape its development, and if so how do they differ from Unix's?

To design the perfect anti-Unix, have no unifying idea at all, just an incoherent pile of ad-hoc features.
Multitasking Capability

One of the most basic ways operating systems can differ isin the extent to which they can support
multiple concurrent processes. At the lowest end (such as DOS or CP/M) the operating system is
basically a sequential program loader with no capacity to multitask at all. Operating systems of this
kind are no longer competitive on general-purpose computers.

At the next level up, an operating system may have cooperative multitasking. Such systems can
support multiple processes, but a process has to voluntarily give up its hold on the processor before
the next one can run (thus, simple programming errors can readily freeze the machine). This style of



operating system was a transient adaptation to hardware that was powerful enough for concurrency

but lacked either a periodic clock interrupt[2—1] or a memory-management unit or both; it, too, is
obsolete and no longer competitive.

Unix has preemptive multitasking, in which timeslices are alocated by a scheduler which routinely
interrupts or pre-empts the running process in order to hand control to the next one. Almost all
modern operating systems support preemption.

Note that “multitasking” is not the same as “multiuser”. An operating system can be multitasking but
single-user, in which case the facility is used to support a single console and multiple background
processes. True multiuser support requires multiple user privilege domains, afeature well cover in
the discussion of internal boundaries a bit further on.

To design the perfect anti-Unix, don't support multitasking at all — or, support multitasking but
cripple it by surrounding process management with alot of restrictions, limitations, and special cases
that mean it's quite difficult to get any actual use out of multitasking.

Cooperating Processes

In the Unix experience, inexpensive process-spawning and easy inter-process communication (I1PC)
makes a whole ecology of small tools, pipes, and filters possible. We'll explore this ecology in
Chapter 7; here, we need to point out some consequences of expensive process-spawning and IPC.

The pipe was technically trivial, but profound in its effect. However, it would not
have been trivial without the fundamental unifying notion of the process as an
autonomous unit of computation, with process control being programmable. As
In Multics, ashell was just another process; process control did not come from
God inscribed in JCL.

-- Doug Mcllroy

If an operating system makes spawning new processes expensive and/or process control is difficult
and inflexible, you'll usually see all of the following consequences:

. Monster monoliths become a more natural way of programming.

. Lotsof policy hasto be expressed within those monoliths. This encourages C++ and
elaborately layered internal code organization, rather than C and relatively flat internal
hierarchies.

. When processes can't avoid a need to communicate, they do so through mechanismsthat are
either clumsy, inefficient, and insecure (such as temporary files) or by knowing far too much
about each others' implementations.

. Multithreading is extensively used for tasks that Unix would handle with multiple
communicating lightweight processes.



. Learning and using asynchronous I/O is a must.

These are examples of common stylistic traits (even in applications programming) being driven by a
limitation in the OS environment.

A subtle but important property of pipes and the other classic Unix IPC methods is that they require
communication between programs to be held down to alevel of simplicity that encourages separation
of function. Conversely, the result of having no equivalent of the pipe isthat programs can only be
designed to cooperate by building in full knowledge of each others' internals.

In operating systems without flexible IPC and a strong tradition of using it, programs communicate
by sharing elaborate data structures. Because the communication problem has to be solved anew for
all programs every time another is added to the set, the complexity of this solution rises as the square
of the number of cooperating programs. Worse than that, any change in one of the exposed data
structures can induce subtle bugsin an arbitrarily large number of other programs.

Word and Excel and PowerPoint and other Microsoft programs have intimate —
one might say promiscuous — knowledge of each others internals. In Unix, one
tries to design programs to operate not specifically with each other, but with
programs as yet unthought of.

-- Doug Mcllroy

WEell return to this theme in Chapter 7.

To design the perfect anti-Unix, make process-spawning very expensive, make process control
difficult and inflexible, and leave IPC as an unsupported or half-supported afterthought.

Internal Boundaries

Unix has wired into it an assumption that the programmer knows best. It doesn't stop you or request
confirmation when you do dangerous things with your own data, like issuing rm -rf *. On the other
hand, Unix is rather careful about not letting you step on other people's data. In fact, Unix encourages
you to have multiple accounts, each with its own attached and possibly differing privileges, to help

you protect yourself from misbehaving programs.[2—2] System programs often have their own pseudo-
user accounts to confer access to special system files without requiring unlimited (or superuser)
access.

Unix has at least three levels of internal boundaries that guard against malicious users or buggy
programs. One is memory management; Unix uses its hardware's memory management unit (MMU)
to ensure that separate processes are prevented from intruding on the others' memory-address spaces.
A second is the presence of true privilege groups for multiple users — an ordinary (nonroot) user's
processes cannot alter or read another user's files without permission. A third is the confinement of
security-critical functions to the smallest possible pieces of trusted code. Under Unix, even the shell
(the system command interpreter) is not a privileged program.



The strength of an operating system'sinternal boundariesis not merely an abstract issue of design: It
has important practical consequences for the security of the system.

To design the perfect anti-Unix, discard or bypass memory management so that a runaway process
can crash, subvert, or corrupt any running program. Have weak or nonexistent privilege groups, so
users can readily alter each others' files and the system's critical data (e.g., a macro virus, having
seized control of your word processor, can format your hard drive). And trust large volumes of code,
like the entire shell and GUI, so that any bug or successful attack on that code becomes athreat to the
entire system.

File Attributes and Record Structures

Unix files have neither record structure nor attributes. In some operating systems, files have an
associated record structure; the operating system (or its service libraries) knows about fileswith a
fixed record length, or about text line termination and whether CR/LF isto be read asasingle logical
character.

In other operating systems, files and directories can have name/attribute pairs associated with them
— out-of-band data used (for example) to associate a document file with an application that
understandsit. (The classic Unix way to handle these associations is to have applications recognize
‘magic numbers’, or other type data within the file itself.)

OS-level record structures are generally an optimization hack, and do little more than complicate
APIs and programmers' lives. They encourage the use of opague record-oriented file formats that
generic tools like text editors cannot read properly.

File attributes can be useful, but (as we will see in Chapter 20) can raise some awkward semantic

issues in aworld of byte-stream-oriented tools and pipes. When file attributes are supported at the
operating-system level, they predispose programmers to use opaque formats and lean on thefile
attributes to tie them to the specific applications that interpret them.

To design the perfect anti-Unix, have a cumbersome set of record structures that make it a hit-or-miss
proposition whether any given tool will be able to even read afile as the writer intended it. Add file
attributes and have the system depend on them heavily, so that the semantics of afile will not be
determinable by looking at the data within it.

Binary File Formats

If your operating system uses binary formats for critical data (such as user-account records) it is
likely that no tradition of readable textual formats for applications will develop. We explain in more
detail why thisis aproblem in Chapter 5. For now it's sufficient to note the following consequences:

. Evenif acommand-line interface, scripting, and pipes are supported, very few filters will



evolve.

. Datafileswill be accessible only through dedicated tools. Developers will think of the tools
rather than the data files as central. Thus, different versions of file formats will tend to be
incompatible.

To design the perfect anti-Unix, make all file formats binary and opague, and require heavyweight
tools to read and edit them.

Preferred User Interface Style

In Chapter 11 we will develop in some detail the consequences of the differences between command-
line interfaces (CLIs) and graphical user interfaces (GUIs). Which kind an operating system's
designers choose as its normal mode of presentation will affect many aspects of the design, from
process scheduling and memory management on up to the application programming interfaces
(APIs) presented for applications to use.

It has been enough years since the first Macintosh that very few people need to be convinced that
weak GUI facilitiesin an operating system are a problem. The Unix lesson is the opposite: that weak
CLI facilities are aless obvious but equally severe deficit.

If the CLI facilities of an operating system are weak or nonexistent, you'll also see the following
consequences:

. Programswill not be designed to cooperate with each other in unexpected ways — because
they can't be. Outputs aren't usable as inputs.
. Remote system administration will be sparsely supported, more difficult to use, and more

network-intensive.[Z3]

. Even simple noninteractive programs will incur the overhead of a GUI or elaborate scripting
interface.

. Servers, daemons, and background processes will probably be impossible or at |east rather
difficult, to program in any graceful way.

To design the perfect anti-Unix, have no CLI and no capability to script programs — or, important
facilities that the CLI cannot drive.

Intended Audience

The design of operating systems varies in response to the expected audience for the system. Some
operating systems are intended for back rooms, some for desktops. Some are designed for technical
users, others for end users. Some are intended to work standalone in real-time control applications,
others for an environment of timesharing and pervasive networking.

One important distinction is client vs. server. ‘Client’ trandates as: being lightweight, suppporting



only asingle user, able to run on small machines, designed to be switched on when needed and off
when the user is done, lacking pre-emptive multitasking, optimized for low latency, and putting alot
of itsresources into fancy user interfaces. ‘ Server’ translates as: being heavyweight, capable of
running continuously, optimized for throughput, fully pre-emptively multitasking to handle multiple
sessions. In origin all operating systems were server operating systems; the concept of a client
operating system only emerged in the late 1970s with inexpensive but underpowered PC hardware.
Client operating systems are more focused on a visually attractive user experience than on 24/7
uptime.

All these variables have an effect on development style. One of the most obviousisthe level of
interface complexity the target audience will tolerate, and how it tends to weight perceived
complexity against other variables like cost and capability. Unix is often said to have been written by
programmers for programmers — an audience that is notoriously tolerant of interface complexity.

Thisis a consequence rather than agoal. | abhor a system designed for the
“user”, if that word is a coded pejorative meaning “stupid and unsophisticated”.
-- Ken Thompson

To design the perfect anti-Unix, write an operating system that thinks it knows what you're doing
better than you do. And then adds injury to insult by getting it wrong.

Entry Barriers to Development

Another important dimension along which operating systems differ is the height of the barrier that
separates mere users from becoming developers. There are two important cost drivers here. Oneisthe
monetary cost of development tools, the other is the time cost of gaining proficiency as a devel oper.
Some devel opment cultures evolve social barriers to entry, but these are usually an effect of the
underlying technology costs, not a primary cause.

Expensive development tools and complex, opaque APIs produce small and €litist programming
cultures. In those cultures, programming projects are large, serious endeavors — they haveto bein
order to offer a payoff that justifies the cost of both hard and soft (human) capital invested. Large,
serious projects tend to produce large, serious programs (and, far too often, large expensive failures).

Inexpensive tools and simple interfaces support casual programming, hobbyist cultures, and
exploration. Programming projects can be small (often, formal project structure is plain unnecessary),
and failure is not a catastrophe. This changes the style in which people develop code; among other
things, they show less tendency to over-commit to failed approaches.

Casual programming tends to produce lots of small programs and a self-reinforcing, expanding
community of knowledge. In aworld of cheap hardware, the presence or absence of such a
community is an increasingly important factor in whether an operating system islong-term viable at
all.

Unix pioneered casual programming. One of the things Unix was first at doing was shipping with a



compiler and scripting tools as part of the default installation available to all users, supporting a
hobbyist software-development culture that spanned multiple installations. Many people who write
code under Unix do not think of it as writing code — they think of it as writing scripts to automate
common tasks, or as customizing their environment.

To design the perfect anti-Unix, make casual programming impossible.

12 For readers without Unix experience, apipeisaway of connecting the output of one program to
the input of another. We'll explore the ways this idea can be used to help programs cooperate in

Chapter 7.

(2 A periodic clock interrupt from the hardware is useful as a sort of heartbeat for atimesharing
system; each time it fires, it tells the system that it may be time to switch to another task, defining the
size of the unit timeslice. In 2003 Unixes usually set the heartbeat to either 60 or 100 times a second.

[22] The modern buzzword for thisis role-based security.

23 This problem was considered quite serious by Microsoft itself during their rebuild of Hotmail.
See [BrooksD].
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Operating-System Comparisons

Thelogic of Unix's design choice stands out more clearly when we contrast it with other operating systems. Here we will
attempt only adesign overview; for detailed discussion of the technical features of different operating systems.[g']

Figure 3.1. Schematic history of timesharing.
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Figure 3.1 indicates the genetic relationships among the timesharing operating systems we'll survey. A few other operating
systems (marked in gray, and not necessarily timesharing) are included for context. Sytemsin solid boxes are till live. The

‘birth’ are dates of first shi pment;[él the ‘death’ dates are generally when the system was end-of-lifed by its vendor.

Solid arrows indicate a genetic relationship or very strong design influence (e.g., alater system with an API deliberately
reverse-engineered to match an earlier one). Dashed lines indicate significant design influence. Dotted lines indicate weak
design influence. Not all the genetic relationships are acknowledged by the devel opers; indeed, some have been officially
denied for legal or corporate-strategy reasons but are open secrets in the industry.

The ‘Unix’ box includes all proprietary Unixes, including both AT& T and early Berkeley versions. The ‘Linux’ box includes
the open-source Unixes, all of which launched in 1991. They have genetic inheritance from early Unix through code that was

freed from AT&T proprietary control by the settlement of a 1993 lawsuit.[29]
VMS

VMS isthe proprietary operating system originally developed for the VA X minicomputer from Digital Equipment
Corporation. It wasfirst released in 1978, was an important production operating system in the 1980s and early 1990s, and
continued to be maintained when DEC was acquired by Compag and Compaq was acquired by Hewlett-Packard. It is still sold

and supported in mid-2003, though little new development goesonin it today.[zll VMS s surveyed here to show the contrast
between Unix and other CLI-oriented operating systems from the minicomputer era.

VMS has full preemptive multitasking, but makes process-spawning very expensive. The VM S file system has an elaborate
notion of record types (though not attributes). These traits have al the consequences we outlined earlier on, especialy (in
VMS's case) the tendency for programsto be huge, clunky monoliths.

VMS features long, readable COBOL-like system commands and command options. It has very comprehensive on-line help
(not for APIs, but for the executable programs and command-line syntax). In fact, the VMS CLI and its help system are the
organizing metaphor of VMS. Though X windows has been retrofitted onto the system, the verbose CLI remains the most
important stylistic influence on program design. This has the following major implications:

. Thefreguency with which people use command-line functions — the more voluminously you have to type, the less
you want to do it.

. The size of programs — people want to type less, so they want to use fewer programs, and write larger ones with more
bundled functions.

. The number and types of options your program accepts — they must conform to the syntactic constraints imposed by
the help system.

. Theease of using the help system — it's very complete, but search and discovery toolsfor it are absent and it has poor
indexing. This makes acquiring broad knowledge difficult, encourages specialization, and discourages casual
programming.

VMS has a respectable system of internal boundaries. It was designed for true multiuser operation and fully employs the
hardware MMU to protect processes from each other. The system command interpreter is privileged, but the encapsulation of
critical functions is otherwise reasonably good. Security cracks against VM S have been rare.

VMStoolswereinitially expensive, and its interfaces are complex. Enormous volumes of VMS programmer documentation
are only available in paper form, so looking up anything is a time-consuming, high-overhead operation. This has tended to
discourage exploratory programming and learning a large toolkit. Only since being nearly abandoned by its vendor hasVMS
developed casual programming and a hobbyist culture, and that culture is not particularly strong.

Like Unix, VMS predated the client/server distinction. It was successful in its day as a general-purpose timesharing operating
system. The intended audience was primarily technical users and software-intensive businesses, implying a moderate
tolerance for complexity.



MacOS

The Macintosh operating system was designed at Apple in the early 1980s, inspired by pioneering work on GUIs done earlier
at Xerox's Palo Alto Research Center. It saw its debut with the Macintosh in 1984. MacOS has gone through two significant
design transitions since, and is undergoing a third. The first transition was the shift from supporting only a single application
at atime to being able to cooperatively multitask multiple applications (MultiFinder); the second was the shift from 68000 to
PowerPC processors, which both preserved backward binary compatibility with 68K applications and brought in an advanced
shared library management system for PowerPC applications, replacing the original 68K trap instruction-based code-sharing
system. The third was the merger of MacOS design ideas with a Unix-derived infrastructure in MacOS X. Except where
specifically noted, the discussion here applies to pre-OS-X versions.

MacOS has a very strong unifying ideathat is very different from Unix's: the Mac Interface Guidelines. These specify in great
detail what an application GUI should look like and how it should behave. The consistency of the Guidelines influenced the
culture of Mac usersin significant ways. Not infrequently, simple-minded ports of DOS or Unix programs that did not follow
the Guidelines have been summarily rejected by the Mac user base and failed in the marketplace.

One key idea of the Guidelines is that things stay where you put them. Documents, directories, and other objects have
persistent locations on the desktop that the system doesn't mess with, and the desktop context persists through reboots.

The Macintosh's unifying ideais so strong that most of the other design choices we discussed above are either forced by it or
invisible. All programs have GUIs. Thereisno CLI at al. Scripting facilities are present but much less commonly used than
under Unix; many Mac programmers never learn them. MacOS's captive-interface GUI metaphor (organized around asingle
main event loop) leads to aweak scheduler without preemption. The weak scheduler, and the fact that all MultiFinder
applications run in asingle large address space, impliesthat it is not practical to use separated processes or even threads rather
than polling.

MacOS applications are not, however, invariably monster monoliths. The system's GUI support code, which is partly
implemented in aROM shipped with the hardware and partly implemented in shared libraries, communicates with MacOS
programs through an event interface that has been quite stable since its beginnings. Thus, the design of the operating system
encourages arelatively clean separation between application engine and GUI interface.

MacOS a'so has strong support for isolating application metadata like menu structures from the engine code. MacOS files
have both a‘datafork’ (a Unix-style bag of bytes that contains a document or program code) and a ‘resource fork’ (a set of
user-definable file attributes). Mac applications tend to be designed so that (for example) the images and sound used in them
are stored in the resource fork and can be modified separately from the application code.

The MacOS system of internal boundariesis very weak. There is awired-in assumption that thereis but a single user, so there
are no per-user privilege groups. Multitasking is cooperative, not pre-emptive. All MultiFinder applications run in the same
address space, so bad code in any application can corrupt anything outside the operating system's low-level kernel. Security
cracks against MacOS machines are very easy to write; the OS has been spared an epidemic mainly because very few people
are motivated to crack it.

Mac programmers tend to design in the opposite direction from Unix programmers; that is, they work from the interface
inward, rather than from the engine outward (we'll discuss some of the implications of this choice in Chapter 20). Everything

in the design of the MacOS conspires to encourage this.

The intended role for the Macintosh was as a client operating system for nontechnical end users, implying avery low
tolerance for interface complexity. Developersin the Macintosh culture became very, very good at designing simple interfaces.

The incremental cost of becoming a developer, assuming you have a Macintosh aready, has never been high. Thus, despite
rather complex interfaces, the Mac developed a strong hobbyist culture early on. There is avigorous tradition of small tools,
shareware, and user-supported software.

Classic MacOS has been end-of -lifed. Most of its facilities have been imported into MacOS X, which mates them to a Unix
infrastructure derived from the Berkeley tradition.[28] At the sameti me, leading-edge Unixes such as Linux are beginning to



borrow ideas like file attributes (a generalization of the resource fork) from MacOS.

0S/2

0S/2 began life as an IBM development project called ADOS (* Advanced DOS'), one of three competitors to become DOS 4.
At that time, IBM and Microsoft were formally collaborating to devel op a next-generation operating system for the PC. OS/2
1.0 wasfirst released in 1987 for the 286, but was unsuccessful. The 2.0 version for the 386 came out in 1992, but by that time
the IBM/Microsoft aliance had already fractured. Microsoft went in a different (and more lucrative) direction with

Windows 3.0. OS2 attracted aloyal minority following, but never attracted a critical mass of developers and users. It
remained third in the desktop market, behind the Macintosh, until being subsumed into IBM's Javainitiative after 1996. The
last released version was 4.0 in 1996. Early versions found their way into embedded systems and still, as of mid-2003, run
inside many of the world's automated teller machines.

Like Unix, OS/2 was built to be preemptively multitasking and would not run on a machine without an MMU (early versions
simulated an MMU using the 286's memory segmentation). Unlike Unix, OS/2 was never built to be a multiuser system.
Process-spawning was relatively cheap, but |PC was difficult and brittle. Networking was initially focused on LAN protocaols,
but a TCP/IP stack was added in later versions. There were no programs analogous to Unix service daemons, so OS/2 never
handled multi-function networking very well.

0S/2 had both a CLI and GUI. Most of the positive legendry around OS/2 was about the Workplace Shell (WPS), the OS2

desktop. Some of this technology was licensed from the devel opers of the AmigaOS Workbench,[@] apioneering GUI
desktop that still as of 2003 has aloyal fan base in Europe. Thisis the one area of the design in which OS/2 achieved alevel
of capability which Unix arguably has not yet matched. The WPS was a clean, powerful, object-oriented design with
understandable behavior and good extensibility. Y ears later it would become a model for Linux's GNOME project.

The class-hierarchy design of WPS was one of OS/2's unifying ideas. The other was multithreading. OS2 programmers used
threading heavily as a partial substitute for IPC between peer processes. No tradition of cooperating program toolkits
developed.

0S/2 had the internal boundaries one would expect in asingle-user OS. Running processes were protected from each other,
and kernel space was protected from user space, but there were no per-user privilege groups. This meant the file system had
no protection against malicious code. Another consequence was that there was no analog of a home directory; application data
tended to be scattered all over the system.

A further consequence of the lack of multiuser capability was that there could be no privilege distinctions in userspace. Thus,
developers tended to trust only kernel code. Many system tasks that in Unix would be handled by user-space daemons were
jammed into the kernel or the WPS. Both bloated as a resullt.

OS2 had atext vs. binary mode (that is, a mode in which CR/LF was read as a single end-of-line, versus one in which no such
interpretation was performed), but no other file record structure. It supported file attributes, which were used for desktop
persistence after the manner of the Macintosh. System databases were mostly in binary formats.

The preferred Ul style was through the WPS. User interfaces tended to be ergonomically better than Windows, though not up
to Macintosh standards (OS/2's most active period was relatively early in the history of MacOS Classic). Like Unix and
Windows, OS/2's user interface was themed around multiple, independent per-task groups of windows, rather than capturing
the desktop for the running application.

The intended audience for OS/2 was business and nontechnical end users, implying alow tolerance for interface complexity.
It was used both as a client operating system and as afile and print server.

In the early 1990s, developersin the OS/2 community began to migrate to a Unix-inspired environment called EMX that
emulated POSIX interfaces. Ports of Unix software started routinely showing up under OS/2 in the latter half of the 1990s.

Anyone could download EM X, which included the GNU Compiler Collection and other open-source development tools. IBM
intermittently gave away copies of the system documentation in the OS/2 devel oper's toolkit, which was posted on many
BBSs and FTP sites. Because of this, the “Hobbes’ FTP archive of user-developed OS/2 software had already grown to over a



gigabytein size by 1995. A very vigorous tradition of small tools, exploratory programming, and shareware developed and
retained aloyal following for some years after OS/2 itself was clearly headed for the dustbin of history.

After the release of Windows 95 the OS/2 community, feeling beleaguered by Microsoft and encouraged by I1BM, became
increasingly interested in Java. After the Netscape source code release in early 1998, the direction of migration changed
(rather suddenly), toward Linux.

OS2 isinteresting as a case study in how far a multitasking but single-user operating-system design can be pushed. Most of
the observationsin this case study would apply well to other operating systems of the same general type, notably AmigaOS@]
and GEM.Y A wealth of OS/2 material is still available on the Web in 2003, including some good histories. 2

Windows NT

Windows NT (New Technology) is Microsoft's operating system for high-end personal and server use; it is shipped in several
variants that can all be considered the same for our purposes. All of Microsoft's operating systems since the demise of
Windows ME in 2000 have been NT-based; Windows 2000 was NT 5, and Windows XP (current in 2003) isNT 5.1. NT is
genetically descended from VMS, with which it shares some important characteristics.

NT has grown by accretion, and lacks a unifying metaphor corresponding to Unix's “everything isafile’ or the MacOS

d&ektop.lgj] Because core technologies are not anchored in a small set of persistent central metaphors, they become obsolete
every few years. Each of the technology generations — DOS (1981), Windows 3.1 (1992), Windows 95 (1995), Windows NT
4 (1996), Windows 2000 (2000), Windows XP (2002), and Windows Server 2003 (2003) — has required that developers
relearn fundamental things in a different way, with the old way declared obsolete and no longer well supported.

There are other consequences as well:

. The GUI facilities coexist uneasily with the weak, remnant command-line interface inherited from DOS and VMS.
« Socket programming has no unifying data object analogous to the Unix everything-is-a-file-handle, so
multiprogramming and network applications that are ssmple in Unix require several more fundamental conceptsin NT.

NT hasfile attributes in some of its file system types. They are used in arestricted way, to implement access-control lists on
some file systems, and don't affect development style very much. It also has a record-type distinction, between text and binary
files, that produces occasional annoyances (both NT and OS/2 inherited this misfeature from DOS).

Though pre-emptive multitasking is supported, process-spawning is expensive — not as expensive asin VMS, but (at about
0.1 seconds per spawn) up to an order of magnitude more so than on a modern Unix. Scripting facilities are weak, and the OS
makes extensive use of binary file formats. In addition to the expected consequences we outlined earlier are these:

. Most programs cannot be scripted at all. Programs rely on complex, fragile remote procedure call (RPC) methods to
communicate with each other, arich source of bugs.

. There are no generic tools at all. Documents and databases can't be read or edited without special-purpose programs.

. Over time, the CLI has become more and more neglected because the environment there is so sparse. The problems
associated with aweak CLI have gotten progressively worse rather than better. (Windows Server 2003 attempts to
reverse this trend somewhat.)

System and user configuration data are centralized in a central properties registry rather than being scattered through
numerous dotfiles and system data files as in Unix. This aso has consequences throughout the design:

. Theregistry makes the system completely non-orthogonal. Single-point failures in applications can corrupt the registry,
frequently making the entire operating system unusable and requiring areinstall.
. Theregistry creep phenomenon: as the registry grows, rising access costs slow down all programs.

NT systems on the Internet are notoriously vulnerable to worms, viruses, defacements, and cracks of al kinds. There are many
reasons for this, some more fundamental than others. The most fundamental isthat NT's internal boundaries are
extremely porous.



NT has access control lists that can be used to implement per-user privilege groups, but a great deal of legacy code ignores
them, and the operating system permits thisin order not to break backward compatibility. There are no security controls on

message traffic between GUI clients, dther,[%] and adding them would also break backward compatibility.

While NT will usean MMU, NT versions after 3.5 have the system GUI wired into the same address space as the privileged
kernel for performance reasons. Recent versions even wire the webserver into kernel space in an attempt to match the speed of
Unix-based webservers.

These holes in the boundaries have the synergistic effect of making actual security on NT systems effectively impossibl e
If an intruder can get code run as any user at al (e.g., through the Outlook email-macro feature), that code can forge messages
through the window system to any other running application. And any buffer overrun or crack in the GUI or webserver can be
exploited to take control of the entire system.

Because Windows does not handle library versioning properly, it suffers from a chronic configuration problem called “DLL
hell”, in which installing new programs can randomly upgrade (or even downgrade!) the libraries on which existing programs

depend. This applies to the vendor-supplied system libraries as well as to application-specific ones: it is not uncommon for an

application to ship with specific versions of system libraries, and break silently when it does not have them.[%!

On the bright side, NT provides sufficient facilities to host Cygwin, which is a compatibility layer implementing Unix at both

the utilities and the API level, with remarkably few compromises.[:ﬂ] Cygwin permits C programs to make use of both the
Unix and the native APIs, and is the first thing many Unix hackersinstall on such Windows systems as they are compelled by
circumstances to make use of.

The intended audience for the NT operating systems is primarily nontechnical end users, implying a very low tolerance for
interface complexity. It is used in both client and server roles.

Early inits history Microsoft relied on third-party development to supply applications. They originally published full
documentation for the Windows APIs, and kept the price of development tools low. But over time, and as competitors
collapsed, Microsoft's strategy shifted to favor in-house development, they began hiding APIs from the outside world, and
development tools grew more expensive. As early as Windows 95, Microsoft was requiring nondisclosure agreements as a
condition for purchasing professional-quality development tools.

The hobbyist and casual-devel oper culture that had grown up around DOS and earlier Windows versions was large enough to
be self-sustaining even in the face of increasing efforts by Microsoft to lock them out (including such measures as certification
programs designed to delegitimize amateurs). Shareware never went away, and Microsoft's policy began to reverse somewhat
after 2000 under market pressure from open-source operating systems and Java. However, Windows interfaces for
‘professional’ programming continued to grow more complex over time, presenting an increasing barrier to casual (or
serious!) coding.

The result of this history is a sharp dichotomy between the design styles practiced by amateur and professional NT developers
— the two groups barely communicate. While the hobbyist culture of small tools and shareware is very much alive,
professional NT projects tend to produce monster monoliths even bulkier than those characteristic of *elitist’ operating
systems like VMS.

Unix-like shell facilities, command sets, and library APIs are available under Windows through third-party libraries including
UWIN, Interix, and the open-source Cygwin.

BeOS

Be, Inc. was founded in 1989 as a hardware vendor, building pioneering multiprocessing machines around the PowerPC chip.
BeOS was Be's attempt to add value to the hardware by inventing a new, network-ready operating system model incorporating
the lessons of both Unix and the MacOS family, without being either. The result was atasteful, clean, and exciting design with
excellent performance in its chosen role as a multimedia platform.



BeOS's unifying ideas were ‘ pervasive threading’, multimedia flows, and the file system as database. BeOS was designed to
minimize latency in the kernel, making it well-suited for processing large volumes of data such as audio and video streams in
real time. BeOS ‘threads’ were actually lightweight processes in Unix terminology, since they supported thread-local storage
and therefore did not necessarily share al address spaces. |PC via shared memory was fast and efficient.

BeOS followed the Unix model in having no file structure above the byte level. Like the MacOS, it supported and used file
attributes. In fact, the BeOS file system was actually a database that could be indexed by any attribute.

One of the things BeOS took from Unix was intelligent design of internal boundaries. It made full use of an MMU, and sealed
running processes off from each other effectively. While it presented as a single-user operating system (no login), it supported
Unix-like privilege groups in the file system and elsewhere in the OS internals. These were used to protect system-critical files
from being touched by untrusted code; in Unix terms, the user was logged in as an anonymous guest at boot time, with the
only other ‘user’ being root. Full multiuser operation would have been a small change to the upper levels of the system, and
there wasin fact aBel ogin utility.

BeOS tended to use binary file formats and the native database built into the file system, rather than Unix-like textual formats.

The preferred Ul style of BeOS was GUI, and it leaned heavily on MacOS experience in interface design. CLI and scripting
were, however, also fully supported. The command-line shell of BeOS was a port of bash(1), the dominant open-source Unix
shell, running through a POSIX compatibility library. Porting of Unix CLI software was, by design, trivially easy.
Infrastructure to support the full panoply of scripting, filters, and service daemons that goes with the Unix model wasin place.

BeOS'sintended role was as a client operating system specialized for near-real-time multimedia processing (especially sound
and video manipulation). Its intended audience included technical and business end users, implying a moderate tolerance for
interface complexity.

Entry barriers to BeOS development were low; though the operating system was proprietary, development tools were
inexpensive and full documentation was readily available. The BeOS effort began as part of one of the efforts to unseat Intel's
hardware with RISC technology, and was continued as a software-only effort after the Internet explosion. Its strategists were
paying attention during Linux's formative period in the early 1990s, and were fully aware of the value of alarge casual-
developer base. In fact they succeeded in attracting an intensely loyal following; as of 2003 no fewer than five separate
projects are attempting to resurrect BeOS in open source.

Unfortunately, the business strategy surrounding BeOS was not as astute as the technical design. The BeOS software was
originally bundled with dedicated hardware, and marketed with only vague hints about intended applications. Later (1998)
BeOS was ported to generic PCs and more closely focused on multimedia applications, but never attracted a critical mass of
applications or users. BeOS finally succumbed in 2001 to a combination of anticompetitive maneuvering by Microsoft
(lawsuit in progress as of 2003) and competition from variants of Linux that had been adapted for multimedia handling.

MVS

MVS (Multiple Virtual Storage) isIBM's flagship operating system for its mainframe computers. Its roots stretch back to
05360, which began life in the mid-1960s as the operating system IBM wanted its customers to use on the then-new
System/360 computer systems. Descendants of this code remain at the heart of today's IBM mainframe operating systems.
Though the code has been amost entirely rewritten, the basic design islargely untouched; backward compatibility has been
religiously maintained, to the point that applications written for OS/360 run unmodified on the MV S of 64-bit z/Series
mainframe computers three architectural generations later.

Of al the operating systems surveyed here, MV Sisthe only one that could be considered older than Unix (the ambiguity
stems from the degree to which it has evolved over time). It is aso the least influenced by Unix concepts and technology, and
represents the strongest design contrast with Unix. The unifying idea of MV Sisthat all work is batch; the system is designed
to make the most efficient possible use of the machine for batch processing of huge amounts of data, with minimal
concessions to interaction with human users.

Native MV S terminals (the 3270 series) operate only in block mode. The user is presented with a screen that hefillsin,
modifying local storage in the terminal. No interrupt is presented to the mainframe until the user presses the send key.



Character-level interaction, in the manner of Unix's raw mode, isimpossible.

TSO, the closest equivalent to the Unix interactive environment, is limited in native capabilities. Each TSO user is represented
to therest of the system as a simulated batch job. The facility is expensive — so much so that its use is typically limited to
programmers and support staff. Ordinary users who need to merely run applications from atermina almost never use TSO.
Instead, they work through transaction monitors, a kind of multiuser application server that does cooperative multitasking and
supports asynchronous I/O. In effect, each kind of transaction monitor is a specialized timesharing plugin (almost, but not
entirely unlike awebserver running CGl).

Another consequence of the batch-oriented architecture is that process spawning is a slow operation. The 1/0O system
deliberately trades high setup cost (and associated latency) for better throughput. These choices are a good match for batch
operation, but deadly to interactive response. A predictable result is that TSO users nowadays spend amost al their time
inside a dialog-driven interactive environment, |SPF. It israre for a programmer to do anything inside native TSO except start
up an instance of 1SPF. This does away with process-spawn overhead, at the cost of introducing a very large program that
does everything but start the machine room coffeepot.

MV S uses the machine MMU; processes have separate address spaces. | nterprocess communication is supported only through
shared memory. There are facilities for threading (which MV S calls “ subtasking”), but they are lightly used, mainly because
the facility isonly easily accessible from programs written in assembler. Instead, the typical batch application is a short series
of heavyweight program invocations glued together by JCL (Job Control Language) which provides scripting, though in a
notorioudly difficult and inflexible way. Programs in ajob communicate through temporary files; filters and the like are nearly
impossible to do in a usable manner.

Every file has arecord format, sometimesimplied (inlineinput filesin JCL are implied to have an 80-byte fixed-length record
format inherited from punched cards, for example), but more often explicitly specified. Many system configuration filesare in
text format, but application files are usually in binary formats specific to the application. Some general tools for examining
files have evolved out of sheer necessity, but it is still not an easy problem to solve.

File system security was an afterthought in the original design. However, when security was found to be necessary, IBM
added it in an inspired fashion: They defined a generic security API, then made all file access requests pass by that interface
before being processed. As aresult, there are at least three competing security packages with differing design philosophies —
and all of them are quite good, with no known cracks against them between 1980 and mid-2003. This variety allows an
installation to select the package that best suitslocal security policy.

Networking facilities are another afterthought. There is no concept of one interface for both network connections and local
files; their programming interfaces are separate and quite different. Thisdid allow TCP/IP to supplant IBM's native SNA
(Systems Network Architecture) as the network protocol of choice fairly seamlesdly. It is still common in 2003 to see both in
use at agiven installation, but SNA is dying out.

Casual programming for MV S is almost nonexistent except within the community of large enterprises that run MVS. Thisis
not due so much to the cost of the tools themselves as it is to the cost of the environment — when one must spend severa
million dollars on the computer system, afew hundred dollars a month for a compiler is almost incidental. Within that
community, however, thereis athriving culture of freely available software, mainly programming and system-administration
tools. The first computer user's group, SHARE, was founded in 1955 by IBM users, and is still going strong today.

Considering the vast architectural differences, it is aremarkable fact that MV S was the first non-System-V operating system
to meet the Single Unix Specification (there is less to this than meets the eye, however, as ports of Unix software from
elsewhere have a strong tendency to founder on ASCII-vs.-EBCDIC character-set issues). It's possible to start a Unix shell
from TSO; Unix file systems are specially formatted MV S data sets. The MV S Unix character set isa special EBCDIC
codepage with newline and linefeed swapped (so that what appears as linefeed to Unix appears like newlineto MV'S), but the
system calls are real system callsimplemented in the MV S kernel.

Asthe cost of the environment drops into the hobbyist range, there is a small but growing group of users of the last public-
domain version of MVS (3.8, dating from 1979). This system, as well as development tools and the emulator to run them, are

all available for the cost of aCD.[%8]



The intended role of MV S has always been in the back office. Like VM S and Unix itself, MV S predates the server/client
distinction. Interface complexity for back-office usersis not only tolerated but expected, in the name of making the computer
spend fewer expensive resources on interfaces and more on the work it's there to get done.

VM/CMS

VM/CMSis|IBM's other mainframe operating system. Historically speaking, it is Unix's uncle: the common ancestor isthe
CTSS system, developed at MIT around 1963 and running on the IBM 7094 mainframe. The group that developed CTSS then
went on to write Multics, the immediate ancestor of Unix. IBM established a group in Cambridge to write atimesharing

system for the IBM 360/40, a modified 360 with (for the first time on an IBM system) a paging MM U2 The MIT and IBM
programmers continued to interact for many years thereafter, and the new system got a user interface that was very CTSS-like,
complete with a shell named EXEC and alarge supply of utilities analogous to those used on Multics and later on Unix.

In another sense, VM/CMS and Unix are funhouse mirror images of one another. The unifying idea of the system, provided by
the VM component, is virtual machines, each of which looks exactly like the underlying physical machine. They are
preemptively multitasked, and run either the single-user operating system CMS or a complete multitasking operating system
(typically MVS, Linux, or another instance of VM itself). Virtual machines correspond to Unix processes, daemons, and
emulators, and communication between them is accomplished by connecting the virtual card punch of one machine to the
virtual card reader of another. In addition, alayered tools environment called CM S Pipelinesis provided within CMS, directly
modeled on Unix's pipes but architecturally extended to support multiple inputs and outputs.

When communi cation between them has not been explicitly set up, virtual machines are completely isolated from each other.
The operating system has the same high reliability, scalability, and security asMV'S, and has far greater flexibility and is
much easier to use. In addition, the kernel-like portions of CM S do not need to be trusted by the VM component, which is
maintained completely separately.

Although CM S is record-oriented, the records are essentially equivalent to the lines that Unix textual tools use. Databases are
much better integrated into CM S Pipelines than is typically the case on Unix, where most databases are quite separate from
the operating system. In recent years, CM S has been augmented to fully support the Single Unix Specification.

The Ul style of CMS s interactive and conversational, very unlike MV S but like VM S and Unix. A full-screen editor called
XEDIT is heavily used.

VM/CMS predates the client/server distinction, and is nowadays used aimost entirely as a server operating system with
emulated IBM terminals. Before Windows came to dominate the desktop so completely, VM/CMS provided word-processing
services and email both internally to IBM and between mainframe customer sites— indeed, many VM systems were installed
exclusively to run those applications because of VM's ready scalability to tens of thousands of users.

A scripting language called Rexx supports programming in a style not unlike shell, awk, Perl or Python. Consequently, casual
programming (especially by system administrators) is very important on VM/CMS. Free cycles permitting, admins often
prefer to run production MV Sin avirtual machine rather than directly on the bare iron, so that CMSis also available and its
flexibility can be taken advantage of. (There are CM S tools that permit accessto MV Sfile systems.)

There are even striking parallels between the history of VM/CMS within IBM and Unix within Digital Equipment Corporation
(which made the hardware that Unix first ran on). It took IBM years to understand the strategic importance of its unofficial
timesharing system, and during that time a community of VM/CMS programmers arose that was closely analogousin
behavior to the early Unix community. They shared ideas, shared discoveries about the system, and above al shared source
code for utilities. No matter how often IBM tried to declare VM/CMS dead, the community — which included IBM's own
MV S system developers! — insisted on keeping it alive. VM/CM S even went through the same cycle of de facto open source
to closed source back to open source, though not as thoroughly as Unix did.

What VM/CMS lacks, however, is any real analog to C. Both VM and CM S were written in assembler and have remained so
implemented. The nearest equivalent to C was various cut-down versions of PL/I that IBM used for systems programming, but
did not share with its customers. Therefore, the operating system remains trapped on its original architectural line, though it
has grown and expanded as the 360 architecture became the 370 series, the XA series, and finally the current z/Series.



Since the year 2000, IBM has been promoting VM/CM S on mainframes to an unprecedented degree — as ways to host
thousands of virtual Linux machines at once.

Linux

Linux, originated by Linus Torvaldsin 1991, leads the pack of new-school open-source Unixes that have emerged since 1990
(also including FreeBSD, NetBSD, OpenBSD, and Darwin), and is representative of the design direction being taken by the
group asawhole. Thetrendsin it can be taken astypical for this entire group.

Linux does not include any code from the original Unix source tree, but it was designed from Unix standards to behave like a
Unix. In the rest of this book, we emphasize the continuity between Unix and Linux. That continuity is extremely strong, both
in terms of technology and key devel opers — but here we emphasize some directions Linux is taking that mark a departure
from ‘classical’ Unix tradition.

Many developers and activistsin the Linux community have ambitions to win a substantial share of end-user desktops. This
makes Linux's intended audience quite a bit broader than was ever the case for the old-school Unixes, which have primarily
aimed at the server and technical-workstation markets. This has implications for the way Linux hackers design software.

The most obvious changeis a shift in preferred interface styles. Unix was originally designed for use on teletypes and slow
printing terminals. Through much of its lifetime it was strongly associated with character-cell video-display terminals lacking
either graphics or color capabilities. Most Unix programmers stayed firmly wedded to the command line long after large end-
user applications had migrated to X-based GUIs, and the design of both Unix operating systems and their applications have
continued to reflect this fact.

Linux users and developers, on the other hand, have been adapting themselves to address the nontechnical user's fear of CLIs.
They have moved to building GUIs and GUI tools much more intensively than was the case in old-school Unix, or even in
contemporary proprietary Unixes. To alesser but significant extent, thisis true of the other open-source Unixes as well.

The desire to reach end users has also made Linux devel opers much more concerned with smoothness of installation and
software distribution issues than is typically the case under proprietary Unix systems. One consequenceis that Linux features
binary-package systems far more sophisticated than any analogs in proprietary Unixes, with interfaces designed (as of 2003,
with only mixed success) to be palatable to nontechnical end users.

The Linux community wants, more than the old-school Unixes ever did, to turn their software into a sort of universal
pipefitting for connecting together other environments. Thus, Linux features support for reading and (often) writing the file
system formats and networking methods native to other operating systems. It aso supports multiple-booting with them on the
same hardware, and simulating them in software inside Linux itself. The long-term goal is subsumption; Linux emulates so it

can absorb.[2Y

The goal of subsuming the competition, combined with the drive to reach the end-user, has motivated Linux developers to
adopt design ideas from non-Unix operating systems to a degree that makes traditional Unixes look rather insular. Linux
applications using Windows .INI format files for configuration is aminor example we'll cover in Chapter 10; Linux 2.5's
incorporation of extended file attributes, which among other things can be used to emulate the semantics of the Macintosh
resource fork, isarecent major one at time of writing.

But the day Linux gives the Mac diagnostic that you can't open afile because you don't have the
application isthe day Linux becomes non-Unix.
-- Doug Mcllroy

The remaining proprietary Unixes (such as Solaris, HP-UX, Al X, etc.) are designed to be big products for big IT budgets.
Their economic niche encourages designs optimized for maximum power on high-end, leading-edge hardware. Because Linux
has part of its roots among PC hobbyists, it emphasizes doing more with less. Where proprietary Unixes are tuned for
multiprocessor and server-cluster operation at the expense of performance on low-end hardware, core Linux developers have
explicitly chosen not to accept more complexity and overhead on low-end machines for marginal performance gains on high-
end hardware.



Indeed, a substantial fraction of the Linux user community is understood to be wringing usefulness out of hardware as
technically obsolete today as Ken Thompson's PDP-7 was in 1969. As a consequence, Linux applications are under pressure
to stay lean and mean that their counterparts under proprietary Unix do not experience.

These trends have implications for the future of Unix as awhole, atopic we'll return to in Chapter 20.

[24] See the OSData website.

2] Except for Multics which exerted most of its influence between the time its specifications were published in 1965 and
when it actually shipped in 1969.

[2°] For details on the lawsuit, see Marshall Kirk McKusick's paper in [OpenSources].

(2] More information is available at the OpenVMS.org site.

(28] MacOS X actual ly consists of two proprietary layers (ports of the OpenStep and Classic Mac GUIs) layered over an open-
source Unix core (Darwin).

(2 In return for some Amigatechnology, IBM gave Commodore alicense for its REXX scripting language. The deal is
described at http://www.os2bbs.com/os2news/OS2Warp.html.

59 Ami 0a0S Portal.

(2 The GEM Operating System.

[%2] See, for example, the OS Voice and OS2 BBS.COM sites.

(33 Perhaps. It has been argued that the unifying metaphor of all Microsoft operating systemsis “the customer must be locked

n-.

[34] http://security.tombom.co.uk/shatter.html

(%3 Microsoft actually admitted publicly that NT security isimpossible in March 2003. See http://www.microsoft.com/technet/
treeview/default.asp?url=/technet/security/bull etin/M S03-010.asp.

(%% The DLL hell problem is somewhat mitigated by the .NET development framework, which handleslibrary versioning —
but as of 2003 .NET only ships on the highest-end server versions of NT.

EL Cygwin islargely compliant with the Single Unix Specification, but programs requiring direct hardware access run into
limitations in the Windows kernel that hosts it. Ethernet cards are notoriously problematic.

(28] http://www.cbttape.org/cdrom.htm

(39 The devel opment machine and initial target was a 40 with customized microcode, but it proved insufficiently powerful;
production deployment was on the 360/67.

(9 The results of Linux's emul ate-and-subsume strategy differ noticeably from the embrace-and-extend practiced by some of



its competitors. For starters, Linux does not break compatibility with what it is emulating in order to lock customersinto the
“extended” version.
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What Goes Around, Comes Around

We attempted to select for comparison timesharing systems that either are now or have in the past
been competitive with Unix. Thefield of plausible candidates is not wide. Most (Multics, ITS, DTSS,
TOPS-10, TOPS-20, MTS, GCOS, MPE and perhaps a dozen others) are so long dead that they are
fading from the collective memory of the computing field. Of those we surveyed, VM S and OS/2 are
moribund, and MacOS has been subsumed by a Unix derivative. MVS and VM/CMS were limited to
asingle proprietary mainframe line. Only Microsoft Windows remains as a viable competitor
independent of the Unix tradition.

We pointed out Unix's strengths in Chapter 1, and they are certainly part of the explanation. But it's

actually more instructive to look at the obverse of that answer and ask which weaknessesin Unix's
competitors did themin.

The most obvious shared problem is nonportability. Most of Unix's pre-1980 competitors were tied to
asingle hardware platform, and died with that platform. One reason VMS survived long enough to
merit inclusion here as a case study is that it was successfully ported from itsoriginal VAX hardware
to the Alpha processor (and in 2003 is being ported from Alphato Itanium). MacOS successfully
made the jump from the Motorola 68000 to PowerPC chipsin the late 1980s. Microsoft Windows
escaped this problem by being in the right place when commoditization flattened the market for
genera-purpose computers into a PC monoculture.

From 1980 on, another particular weakness continually reemerges as atheme in different systems that
Unix either steamrollered or outlasted: an inability to support networking gracefully.

In aworld of pervasive networking, even an operating system designed for single-user use needs
multiuser capability (multiple privilege groups) — because without that, any network transaction that
can trick a user into running malicious code will subvert the entire system (Windows macro viruses
are only the tip of thisiceberg). Without strong multitasking, the ability of an operating system to
handle network traffic and run user programs at the same time will be impaired. The operating system
also needs efficient IPC so that its network programs can communicate with each other and with the
user's foreground applications.

Windows gets away with having severe deficiencies in these areas only by virtue of having developed
amonopoly position before networking became really important, and by having a user population
that has been conditioned to accept a shocking frequency of crashes and security breaches as normal.
Thisis not astable situation, and it is one that partisans of Linux have successfully (in 2003)
exploited to make mgor inroads in the server-operating-system market.

Around 1980, during the early heyday of personal computers, operating-system designers dismissed
Unix and traditional timesharing as heavyweight, cumbersome, and inappropriate for the brave new



world of single-user personal machines — despite the fact that GUI interfaces tended to demand the
reinvention of multitasking to cope with threads of execution bound to different windows and
widgets. The trend toward client operating systems was so intense that server operating systems were
at times dismissed as steam-powered relics of a bygone age.

But as the designers of BeOS noticed, the requirements of pervasive networking cannot be met
without implementing something very close to general-purpose timesharing. Single-user client
operating systems cannot thrive in an Internetted world.

This problem drove the reconvergence of client and server operating systems. Thefirst, pre-Internet
attempts at peer-to-peer networking over LANS, in the late 1980s, began to expose the inadequacy of
the client-OS design model. Data on a network has to have rendezvous pointsin order to be shared;
thus, we can't do without servers. At the same time, experience with the Macintosh and Windows
client operating systems raised the bar on the minimum quality of user experience customers would
tolerate.

With non-Unix models for timesharing effectively dead by 1990, there were not many possible
responses client operating-system designers could mount to this challenge. They could co-opt Unix
(asMacOS X has done), re-invent roughly equivalent features a patch at a time (as Windows has
done), or attempt to reinvent the entire world (as BeOS tried and failed to do). But meanwhile, open-
source Unixes were growing client-like capabilities to use GUIs and run on inexpensive personal
machines.

These pressures turned out, however, not to be as symmetrically balanced as the above description
might imply. Retrofitting server-operating-system features like multiple privilege classes and full
multitasking onto a client operating system is very difficult, quite likely to break compatibility with
older versions of the client, and generally produces a fragile and unsatisfactory result rife with
stability and security problems. Retrofitting a GUI onto a server operating system, on the other hand,
raises problems that can largely be finessed by a combination of cleverness and throwing ever-more-
inexpensive hardware resources at the problem. Aswith buildings, it's easier to repair superstructure
on top of asolid foundation than it is to replace the foundations without trashing the superstructure.

Besides having the native architectural strengths of a server operating system, Unix was always
agnostic about its intended audience. Its designers and implementers never assumed they knew all
potential uses the system would be put to.

Thus, the Unix design proved more capable of reinventing itself as a client than any of its client-
operating-system competitors were of reinventing themselves as servers. While many other factors of
technology and economics contributed to the Unix resurgence of the 1990s, thisis one that really
foregrounds itself in any discussion of operating-system design style.
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There are two ways of constructing a software design. One isto make it so simple that there are
obviously no deficiencies; the other isto make it so complicated that there are no obvious
deficiencies. The first method is far more difficult.

-- C. A. R Hoare The Emperor's Old Clothes, CACM February 1981

Thereisanatural hierarchy of code-partitioning methods that has evolved as programmers have had
to manage ever-increasing levels of complexity. In the beginning, everything was one big lump of
machine code. The earliest procedural languages brought in the notion of partition by subroutine.
Then we invented service libraries to share common utility functions among multiple programs. Next,
we invented separated address spaces and communicating processes. Today we routinely distribute
program systems across multiple hosts separated by thousands of miles of network cable.

The early developers of Unix were among the pioneers in software modularity. Before them, the Rule
of Modularity was computer-science theory but not engineering practice. In Design Rules [Baldwin-

Clark], a path-breaking study of the economics of modularity in engineering design, the authors use
the development of the computer industry as a case study and argue that the Unix community wasin



fact the first to systematically apply modular decomposition to production software, as opposed to
hardware. Modularity of hardware has of course been one of the foundations of engineering since the
adoption of standard screw threads in the late 1800s.

The Rule of Modularity bears amplification here: The only way to write complex software that won't
fall onitsfaceisto build it out of ssmple modules connected by well-defined interfaces, so that most
problems are local and you can have some hope of fixing or optimizing a part without breaking the
whole.

The tradition of being careful about modularity and of paying close attention to issues like
orthogonality and compactness are still much deeper in the bone among Unix programmers than
elsewhere.

Early Unix programmers became good at modularity because they had to be. An
OS s one of the most complicated pieces of code around. If it is not well
structured, it will fall apart. There were a couple of early failures at building
Unix that were scrapped. One can blame the early (structureless) C for this, but
basically it was because the OS was too complicated to write. We needed both
refinements in tools (like C structures) and good practice in using them (like Rob
Pike's rules for programming) before we could tame that complexity.

-- Ken Thompson

Early Unix hackers struggled with thisin many ways. In the languages of 1970 function calls were
expensive, either because call semantics were complicated (PL/1. Algol) or because the compiler was
optimizing for other things like fast inner loops at the expense of call time. Thus, code tended to be
written in big lumps. Ken and several of the other early Unix developers knew modularity was a good
idea, but they remembered PL/1 and were reluctant to write small functions lest performance go to
hell.

Dennis Ritchie encouraged modularity by telling all and sundry that function
callswerereally, really cheap in C. Everybody started writing small functions
and modularizing. Y ears later we found out that function calls were still
expensive on the PDP-11, and VAX code was often spending 50% of itstimein
the CALL S instruction. Dennis had lied to us! But it wastoo late; we were all
hooked...

-- Steve Johnson

All programmers today, Unix natives or not, are taught to modularize at the subroutine level within
programs. Some learn the art of doing this at the module or abstract-data-type level and call that
‘good design’. The design-patterns movement is making a noble effort to push up alevel from there
and discover successful design abstractions that can be applied to organize the large-scale structure of
programs.

Getting better at all these kinds of problem partitioning is aworthy goal, and many excellent
treatments of them are available elsewhere. We shall not attempt to cover all theissuesrelating to



modularity within programs in too much detail: first, because that is a subject for an entire volume (or
several volumes) in itself; and second, because thisis a book about the art of Unix programming.

What we will do here is examine more specifically what the Unix tradition teaches us about how to
follow the Rule of Modularity. In this chapter, our examples will live within process units. Later, in
Chapter 7, we'll examine the circumstances under which partitioning programs into multiple
cooperating processesis agood idea, and discuss more specific techniques for doing that partitioning.
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Encapsulation and Optimal Module Size

Thefirst and most important quality of modular code is encapsulation. Well-encapsulated modules
don't expose their internals to each other. They don't call into the middle of each others
implementations, and they don't promiscuously share global data. They communicate using
application programming interfaces (APIs) — narrow, well-defined sets of procedure calls and data
structures. Thisiswhat the Rule of Modularity is about.

The APIs between modules have a dual role. On the implementation level, they function as choke
points between the modules, preventing the internals of each from leaking into its neighbors. On the
design levdl, it isthe APIs (not the bits of implementation between them) that really define your
architecture.

One good test for whether an APl iswell designed isthisone: if you try to write adescription of it in
purely human language (with no source-code extracts allowed), does it make sense? It is avery good
idea to get into the habit of writing informal descriptions of your APIs before you code them. Indeed,
some of the most able developers start by defining their interfaces, writing brief commentsto
describe them, and then writing the code — since the process of writing the comment clarifies what
the code must do. Such descriptions help you organize your thoughts, they make useful module
comments, and eventually you might want to turn them into a roadmap document for future readers
of the code.

As you push module decomposition harder, the pieces get smaller and the definition of the APIs gets
more important. Global complexity, and consequent vulnerability to bugs, decreases. It has been
received wisdom in computer science since the 1970s (exemplified in papers such as [Parnas]) that
you ought to design your software systems as hierarchies of nested modules, with the grain size of the
modules at each level held to a minimum.

It is possible, however, to push this kind of decomposition too hard and make your modules too
small. There is evidence [Hatton97] that when one plots defect density versus module size, the curve

Is U-shaped and concave upwards (see Figure 4.1). Very small and very large modules are associated

with more bugs than those of intermediate size. A different way of viewing the same dataisto plot
lines of code per module versus total bugs. The curve looks roughly logarithmic up to a ‘ sweet spot’
where it flattens (corresponding to the minimum in the defect density curve), after which it goes up as
the square of the number of the lines of code (which iswhat one might intuitively expect for the

whole curve, following Brooks's Lawl*}).

Figure4.1. Qualitative plot of defect count and density vs. module size.
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This unexpectedly increasing incidence of bugs at small module sizes holds across awide variety of
systems implemented in different languages. Hatton has proposed a model relating this nonlinearity

to the chunk size of human short-term memory.[4—2] Another way to interpret the nonlinearity is that at
small module grain sizes, the increasing complexity of the interfaces becomes the dominating term;
it's difficult to read the code because you have to understand everything before you can understand
anything. In Chapter 7 we'll examine more advanced forms of program partitioning; there, too, the
complexity of interface protocols comes to dominate the total complexity of the system asthe
component processes get smaller.

In nonmathematical terms, Hatton's empirical results imply a sweet spot between 200 and 400 logical
lines of code that minimizes probable defect density, all other factors (such as programmer skill)
being equal. This size isindependent of the language being used — an observation which strongly
reinforces the advice given elsewhere in this book to program with the most powerful languages and
tools you can. Beware of taking these numberstoo literally however. Methods for counting lines of
code vary considerably according to what the analyst considers alogical line, and other biases (such
as whether comments are stripped). Hatton himself suggests as arule of thumb a 2x conversion
between logical and physical lines, suggesting an optimal range of 400-800 physical lines.

[*1 Brooks's Law predicts that adding programmers to alate project makes it later. More generaly, it
predicts that costs and error rates rise as the square of the number of programmers on a project.



[2] In Hatton's model, small differences in the maximum chunk size a programmer can hold in short-
term memory have alarge multiplicative effect on the programmer’s efficiency. Thismight be a

major contributor to the order-of-magnitude (or larger) variations in effectiveness observed by Fred
Brooks and others.
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Compactness and Orthogonality

Code is not the only sort of thing with an optimal chunk size. Languages and APIs (such as sets of
library or system calls) run up against the same sorts of human cognitive constraints that produce
Hatton's U-curve.

Accordingly, Unix programmers have learned to think very hard about two other properties when
designing APIs, command sets, protocols, and other ways to make computers do tricks: compactness
and orthogonality.

Compactness

Compactness is the property that adesign can fit inside a human being's head. A good practical test
for compactnessisthis: Does an experienced user normally need a manual? If not, then the design (or
at least the subset of it that covers normal use) is compact.

Compact software tools have all the virtues of physical tools that fit well in the hand. They feel
pleasant to use, they don't obtrude themsel ves between your mind and your work, they make you
more productive — and they are much less likely than unwieldy toolsto turn in your hand and injure
you.

Compact is not equivalent to ‘weak’. A design can have agreat deal of power and flexibility and still
be compact if it is built on abstractions that are easy to think about and fit together well. Nor is
compact equivalent to ‘easily learned’ ; some compact designs are quite difficult to understand until
you have mastered an underlying conceptual model that istricky, at which point your view of the
world changes and compact becomes simple. For alot of people, the Lisp languageisaclassic
example of this.

Nor does compact mean ‘small’. If awell-designed system is predictable and
‘obvious’ to the experienced user, it might have quite afew pieces.
-- Ken Arnold

Very few software designs are compact in an absolute sense, but many are compact in aslightly
looser sense of the term. They have a compact working set, a subset of capabilities that suffices for
80% or more of what expert users normally do with them. Practically speaking, such designs
normally need areference card or cheat sheet but not a manual. Wel'll call such designs semi-compact,
as opposed to strictly compact.

The concept is perhaps best illustrated by examples. The Unix system call API is semi-compact, but
the standard C library is not compact in any sense. While Unix programmers easily keep a subset of
the system calls sufficient for most applications programming (file system operations, signals, and



process control) in their heads, the C library on modern Unixes includes many hundreds of entry
points, e.g., mathematical functions, that won't all fit inside a single programmer's cranium.

The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing
Information [Miller] is one of the foundation papers in cognitive psychology (and, incidentally, the
specific reason that U.S. local telephone numbers have seven digits). It showed that the number of
discrete items of information human beings can hold in short-term memory is seven, plus or minus
two. This gives us agood rule of thumb for evaluating the compactness of APIs: Does a programmer
have to remember more than seven entry points? Anything larger than thisis unlikely to be strictly
compact.

Among Unix tools, make(1) is compact; autoconf(1) and automake(1) are not. Among markup
languages, HTML is semi-compact, but DocBook (a documentation markup language we shall
discuss in Chapter 18) is not. The man(7) macros are compact, but troff(1) markup is not.

Among general-purpose programming languages, C and Python are semi-compact; Perl, Java, Emacs
Lisp, and shell are not (especially since serious shell programming requires you to know half-a-dozen
other tools like sed(1) and awk(1)). C++ is anti-compact — the language's designer has admitted that
he doesn't expect any one programmer to ever understand it all.

Some designs that are not compact have enough internal redundancy of features that individual
programmers end up carving out compact dialects sufficient for that 80% of common tasks by
choosing aworking subset of the language. Perl has this kind of pseudo-compactness, for example.
Such designs have a built-in trap; when two programmers try to communicate about a project, they
may find that differencesin their working subsets are a significant barrier to understanding and
modifying the code.

Noncompact designs are not automatically doomed or bad, however. Some problem domains are
simply too complex for a compact design to span them. Sometimes it's necessary to trade away
compactness for some other virtue, like raw power and range. Troff markup is a good example of
this. So isthe BSD sockets API. The purpose of emphasizing compactness as a virtue is not to
condition you to treat compactness as an absolute requirement, but to teach you to do what Unix
programmers do: value compactness properly, design for it whenever possible, and not throw it away
casually.

Orthogonality

Orthogonality is one of the most important properties that can help make even complex designs
compact. In apurely orthogonal design, operations do not have side effects; each action (whether it's
an API call, amacro invocation, or alanguage operation) changes just one thing without affecting
others. There is one and only one way to change each property of whatever system you are
controlling.

Y our monitor has orthogonal controls. Y ou can change the brightness independently of the contrast
level, and (if the monitor has one) the color balance control will be independent of both. Imagine how



much more difficult it would be to adjust a monitor on which the brightness knob affected the color
balance: you'd have to compensate by tweaking the color balance every time after you changed the
brightness. Worse, imagine if the contrast control also affected the color balance; then, you'd haveto
adjust both knobs simultaneously in exactly the right way to change either contrast or color balance
alone while holding the other constant.

Far too many software designs are non-orthogonal. One common class of design mistake, for
example, occursin code that reads and parses data from one (source) format to another (target)
format. A designer who thinks of the source format as always being stored in adisk file may write the
conversion function to open and read from a named file. Usually the input could just as well have
been any file handle. If the conversion routine were designed orthogonally, e.g., without the side
effect of opening afile, it could save work later when the conversion has to be done on a data stream
supplied from standard input, a network socket, or any other source.

Doug Mcllroy's advice to “Do one thing well” is usually interpreted as being about simplicity. But it's
also, implicitly and at least as importantly, about orthogonality.

It's not a problem for a program to do one thing well and other things as side effects, provided
supporting those other things doesn't raise the complexity of the program and its vulnerability to
bugs. In Chapter 9 we'll examine a program called ascii that prints synonyms for the names of ASCI|
characters, including hex, octal, and binary values; as a side effect, it can serve as a quick base
converter for numbersin the range 0—255. This second use is not an orthogonality violation because
the features that support it are all necessary to the primary function; they do not make the program
more difficult to document or maintain.

The problems with non-orthogonality arise when side effects complicate a programmer's or user's
mental model, and beg to be forgotten, with results ranging from inconvenient to dire. Even when
you do not forget the side effects, you're often forced to do extrawork to suppress them or work
around them.

Thereis an excellent discussion of orthogonality and how to achieve it in The Pragmatic
Programmer [Hunt-Thomas|. Asthey point out, orthogonality reduces test and development time,

because it's easier to verify code that neither causes side effects nor depends on side effects from
other code — there are fewer combinations to test. If it breaks, orthogonal code is more easily
replaced without disturbance to the rest of the system. Finally, orthogonal code is easier to document
and reuse.

The concept of refactoring, which first emerged as an explicit idea from the * Extreme Programming’
schooal, is closely related to orthogonality. To refactor code isto change its structure and organization
without changing its observable behavior. Software engineers have been doing this since the birth of
the field, of course, but naming the practice and identifying a stock set of refactoring techniques has
hel ped concentrate peoples' thinking in useful ways. Because these fit so well with the central
concerns of the Unix design tradition, Unix developers have quickly coopted the terminology and

ideas of refactoring.[*]



The basic Unix APIswere designed for orthogonality with imperfect but considerable success. We
take for granted being able to open afile for write access without exclusive-locking it for write, for
example; not all operating systems are so graceful. Old-style (System I11) signals were non-
orthogonal, because signal receipt had the side-effect of resetting the signal handler to the default die-
on-receipt. There are large non-orthogonal patches like the BSD sockets API and very large oneslike
the X windowing system's drawing libraries.

But on the whole the Unix API is agood example: Otherwise it not only would not but could not be
so widely imitated by C libraries on other operating systems. Thisis also areason that the Unix API
repays study even if you are not a Unix programmer; it has lessons about orthogonality to teach.

The SPOT Rule

The Pragmatic Programmer articulates arule for one particular kind of orthogonality that is
especially important. Their “Don't Repeat Y ourself” ruleis: every piece of knowledge must have a
single, unambiguous, authoritative representation within a system. In this book we prefer, following a
suggestion by Brian Kernighan, to call this the Single Point Of Truth or SPOT rule.

Repetition leads to inconsistency and code that is subtly broken, because you changed only some
repetitions when you needed to change all of them. Often, it also means that you haven't properly
thought through the organization of your code.

Constants, tables, and metadata should be declared and initialized once and imported elsewhere. Any
time you see duplicate code, that's a danger sign. Complexity is a cost; don't pay it twice.

Often it's possible to remove code duplication by refactoring; that is, changing the organization of
your code without changing the core agorithms. Data duplication sometimes appears to be forced on
you. But when you see it, here are some valuable questions to ask:

. If you have duplicated datain your code because it hasto have two different representationsin
two different places, can you write afunction, tool or code generator to make one
representation from the other, or both from a common source?

. If your documentation duplicates knowledge in your code, can you generate parts of the
documentation from parts of the code, or vice-versa, or both from a common higher-level
representation?

. If your header files and interface declarations duplicate knowledge in your implementation
code, isthere away you can generate the header files and interface declarations from the
code?

There isan analog of the SPOT rule for data structures: “No junk, no confusion”. “No junk” says that
the data structure (the model) should be minimal, e.g., not made so general that it can represent
situations which cannot exist. “No confusion” says that states which must be kept distinct in the real -



world problem must be kept distinct in the model. In short, the SPOT rule advocates seeking a data
structure whose states have a one-to-one correspondence with the states of the real-world system to
be model ed.

From deeper within the Unix tradition, we can add some of our own corollaries of the SPOT rule:

. Areyou duplicating data because you're caching intermediate results of some computation or
lookup? Consider carefully whether thisis premature optimization; stale caches (and the

layers of code needed to keep caches synchronized) are afertile source of bugs,[4—4] and can
even slow down overall performance if (as often happens) the cache-management overhead is
higher than you expected.

. If you seelots of duplicative boilerplate code, can you generate all of it from a single higher-
level representation, twiddling a few knobs to generate the different cases?

The reader should begin to see a pattern emerging here.

In the Unix world, the SPOT Rule as a unifying idea has seldom been explicit — but heavy use of
code generators to implement particular kinds of SPOT are very much part of the tradition. Welll
survey these techniques in Chapter 9.

Compactness and the Strong Single Center

One subtle but powerful way to promote compactnessin adesign isto organize it around a strong
core algorithm addressing a clear formal definition of the problem, avoiding heuristics and fudging.

Formalization often clarifies atask spectacularly. It is not enough for a
programmer to recognize that bits of histask fall within standard computer-
science categories — alittle depth-first search here and a quicksort there. The
best results occur when the nub of the task can be formalized, and a clear model
of the job at hand can be constructed. It is not necessary that ultimate users
comprehend the model. The very existence of a unifying core will provide a
comfortable feel, unencumbered with the why-in-hell-did-they-do-that moments
that are so prevalent in using Swiss-army-knife programs.

-- Doug Mcllroy

Thisis an often-overlooked strength of the Unix tradition. Many of its most effective tools are thin
wrappers around a direct translation of some single powerful algorithm.

Perhaps the clearest example of thisis diff(1), the Unix tool for reporting differences between related
files. Thistool and its dual, patch(1), have become central to the network-distributed devel opment
style of modern Unix. A valuable property of diff isthat it seldom surprises anyone. It doesn't have
special cases or painful edge conditions, because it uses a simple, mathematically sound method of
sequence comparison. This has consequences:



By virtue of amathematical model and a solid algorithm, Unix diff contrasts
markedly with itsimitators. First, the central engineis solid, small, and has never
needed one line of maintenance. Second, the results are clear and consistent,
unmarred by surprises where heuristics fail.

-- Doug Mcllroy

Thus, people who use diff can develop an intuitive feel for what it will do in any given situation
without necessarily understanding the central algorithm perfectly. Other well-known examples of this
special kind of clarity achieved through a strong central algorithm abound in Unix:

. Thegrep(1) utility for selecting lines out of files by pattern matching is a simple wrapper
around aformal algebra of regular-expression patterns (see the section called “ Case Study:
Regular Expressions’ for discussion). If it had lacked this consistent mathematical model, it
would probably look like the design of the original glob(1) facility in the oldest Unixes, a
handful of ad-hoc wildcards that can't be combined.

. Theyacc(1) utility for generating language parsersis a thin wrapper around the formal theory
of LR(1) grammars. Its partner, the lexical analyzer generator lex(1), isasimilarly thin
wrapper around the theory of nondeterministic finite-state automata.

All three of these programs are so bug-free that their correct functioning is taken utterly for granted,
and compact enough to fit easily in a programmer's hand. Only a part of these good qualities are due
to the polishing that comes with along service life and frequent use; most of it is that, having been
constructed around a strong and provably correct algorithmic core, they never needed much polishing
in the first place.

The opposite of aformal approach is using heuristics—rules of thumb leading toward a solution that
is probabilistically, but not certainly, correct. Sometimes we use heuristics because a
deterministically correct solution isimpossible. Think of spam filtering, for example; an
algorithmically perfect spam filter would need a full solution to the problem of understanding natural
language as a module. Other times, we use heuristics because known formally correct methods are
Impossibly expensive. Virtual-memory management is an example of this; there are near-perfect
solutions, but they require so much runtime instrumentation that their overhead would swamp any
theoretical gain over heuristics.

The trouble with heuristics is that they proliferate special cases and edge cases. If nothing else, you
usually have to backstop a heuristic with some sort of recovery mechanism when it fails. All the
usual problems with escalating complexity follow. To manage the resulting tradeoffs, you have to
start by being aware of them. Always ask if a heuristic actually pays off in performance what it costs
in code complexity — and don't guess at the performance difference, actually measure it before
making a decision.

The Value of Detachment

We began this book with areference to Zen: “a special transmission, outside the scriptures’. Thiswas
not mere exoticism for stylistic effect; the core concepts of Unix have always had a spare, Zen-like



simplicity that continues to shine through the layers of historical accidents that have accreted around
them. This quality isreflected in the cornerstone documents of Unix, like The C Programming
Language [Kernighan-Ritchie] and the 1974 CACM paper that introduced Unix to the world; one of

the famous quotes from that paper observes “...constraint has encouraged not only economy, but also
acertain elegance of design”. That ssimplicity came from trying to think not about how much a
language or operating system could do, but of how little it could do — not by carrying assumptions
but by starting from zero (what in Zen is called “beginner's mind” or *“empty mind”).

To design for compactness and orthogonality, start from zero. Zen teaches that attachment leads to
suffering; experience with software design teaches that attachment to unnoticed assumptions leads to
non-orthogonality, noncompact designs, and projects that fail or become maintenance nightmares.

To achieve enlightenment and surcease from suffering, Zen teaches detachment. The Unix tradition
teaches the value of detachment from the particular, accidental conditions under which adesign
problem was posed. Abstract. Simplify. Generalize. Because we write software to solve problems, we
cannot completely detach from the problems — but it is well worth the mental effort to see how

many preconceptions you can throw away, and whether the design becomes more compact and
orthogonal as you do that. Possibilities for code reuse often result.

Jokes about the relationship between Unix and Zen are a live part of the Unix tradition as well [*7]

Thisis not an accident.

[#3] In the foundation text on this topic, Refactoring [Fowler], the author comes very close to stating
that the principal goal of refactoring isto improve orthogonality. But lacking the concept, he can only

approximate thisideafrom several different directions. eliminating code duplication and various
other “bad smells’ many of which are some sort of orthogonality violation.

[*1 An archetypal example of bad caching isthe rehash directivein csh(1); type man 1 csh for
details. See the section called “ Caching Operation Results’ for another example.

%2 For arecent example of Unix/Zen crossover, see Appendix D.
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Software Is a Many-Layered Thing

Broadly speaking, there are two directions one can go in designing a hierarchy of functions or
objects. Which direction you choose, and when, has a profound effect on the layering of your code.

Top-Down versus Bottom-Up

One direction is bottom-up, from concrete to abstract — working up from the specific operationsin
the problem domain that you know you will need to perform. For example, if oneis designing
firmware for adisk drive, some of the bottom-level primitives might be ‘ seek head to physical block’,
‘read physical block’, ‘write physical block’, ‘toggle drive LED’, etc.

The other direction is top-down, abstract to concrete — from the highest-level specification
describing the project as awhole, or the application logic, downwards to individual operations. Thus,
If oneis designing software for a mass-storage controller that might drive severa different sorts of
media, one might start with abstract operations like *seek logical block’, ‘read logical block’, ‘write
logical block’, ‘toggle activity indication’. These would differ from the similarly named hardware-
level operations above in that they're intended to be generic across different kinds of physical devices.

These two examples could be two ways of approaching design for the same collection of hardware.

Y our choice, in cases like this, is one of these: either abstract the hardware (so the objects encapsulate
the real things out there and the program is merely alist of manipulations on those things), or
organize around some behavioral model (and then embed the actual hardware manipulations that
carry it out in the flow of the behavioral logic).

An analogous choice shows up in alot of different contexts. Suppose you're writing MIDI sequencer
software. Y ou could organize that code around its top level (sequencing tracks) or around its bottom
level (switching patches or samples and driving wave generators).

A very concrete way to think about this difference isto ask whether the design is organized around its
main event loop (which tends to have the high-level application logic closeto it) or around a service
library of all the operations that the main loop can invoke. A designer working from the top down

will start by thinking about the program's main event loop, and plug in specific events later. A
designer working from the bottom up will start by thinking about encapsulating specific tasks and
glue them together into some kind of coherent order later on.

For alarger example, consider the design of a Web browser. The top-level design of a Web browser
Is a specification of the expected behavior of the browser: what typesof URL (likeht t p: orft p:
orfil e:)itinterprets, what kinds of imagesit is expected to be able to render, whether and with
what limitations it will accept Java or JavaScript, etc. The layer of the implementation that
corresponds to thistop-level view isits main event loop; each time around, the loop waits for,



collects, and dispatches on a user action (such as clicking aWeb link or typing a character into a
field).

But the Web browser hasto call alarge set of domain primitivesto do itsjob. One group of theseis
concerned with establishing network connections, sending data over them, and receiving responses.
Another set isthe operations of the GUI toolkit the browser will use. Y et athird set might be
concerned with the mechanics of parsing retrieved HTML from text into a document object tree.

Which end of the stack you start with matters alot, because the layer at the other end is quite likely to
be constrained by your initial choices. In particular, if you program purely from the top down, you
may find yourself in the uncomfortable position that the domain primitives your application logic
wants don't match the ones you can actually implement. On the other hand, if you program purely
from the bottom up, you may find yourself doing alot of work that isirrelevant to the application
logic — or merely designing a pile of bricks when you were trying to build a house.

Ever since the structured-programming controversies of the 1960s, novice programmers have
generally been taught that the correct approach is the top-down one: stepwise refinement, where you
specify what your program isto do at an abstract level and gradually fill in the blanks of
implementation until you have concrete working code. Top-down tends to be good practice when
three preconditions are true: (a) you can specify in advance precisely what the program isto do, (b)
the specification is unlikely to change significantly during implementation, and (c) you have alot of
freedom in choosing, at alow level, how the program is to get that job done.

These conditions tend to be fulfilled most often in programs relatively close to the user and high in
the software stack — applications programming. But even there those preconditions often fail. Y ou
can't count on knowing what the ‘right’ way for aword processor or a drawing program to behaveis
until the user interface has had end-user testing. Purely top-down programming often has the effect of
overinvesting effort in code that has to be scrapped and rebuilt because the interface doesn't pass a
reality check.

In self-defense against this, programmers try to do both things — express the abstract specification as
top-down application logic, and capture alot of low-level domain primitivesin functions or libraries,
so they can be reused when the high-level design changes.

Unix programmers inherit atradition that is centered in systems programming, where the low-level
primitives are hardware-level operations that are fixed in character and extremely important. They
therefore lean, by learned instinct, more toward bottom-up programming.

Whether you're a systems programmer or not, bottom-up can also look more attractive when you are
programming in an exploratory way, trying to get a grasp on hardware or software or real-world
phenomena you don't yet completely understand. Bottom-up programming gives you time and room
to refine a vague specification. Bottom-up also appeals to programmers natural human laziness —
when you have to scrap and rebuild code, you tend to have to throw away larger piecesif you're
working top-down than you do if you're working bottom-up.



Real code, therefore tends to be programmed both top-down and bottom-up. Often, top-down and
bottom-up code will be part of the same project. That's where ‘glue’ enters the picture.

Glue Layers

When the top-down and bottom-up drives collide, the result is often amess. The top layer of
application logic and the bottom layer of domain primitives have to be impedance-matched by alayer
of gluelogic.

One of the lessons Unix programmers have learned over decadesis that glueis nasty stuff and that it
isvitally important to keep glue layers as thin as possible. Glue should stick things together, but
should not be used to hide cracks and unevennessin the layers.

In the Web-browser example, the glue would include the rendering code that maps a document object
parsed from incoming HTML into aflattened visual representation as abitmap in adisplay buffer,
using GUI domain primitives to do the painting. This rendering code is notoriously the most bug-
prone part of a browser. It attracts into itself kluges to address problems that originate both in the
HTML parsing (because thereis alot of ill-formed markup out there) and the GUI toolkit (which may
not have quite the primitives that are really needed).

A Web browser's glue layer has to mediate not merely between specification and domain primitives,
but between several different external specifications: the network behavior standardized in HTTP,
HTML document structure, and various graphics and multimedia formats as well as the users
behavioral expectations from the GUI.

And one single bug-prone glue layer is not the worst fate that can befall adesign. A designer who is
aware that the glue layer exists, and tries to organize it into amiddle layer around its own set of data
structures or objects, can end up with two layers of glue — one above the midlayer and one bel ow.
Programmers who are bright but unseasoned are particularly apt to fall into thistrap; they'll get each
fundamental set of classes (application logic, midlayer, and domain primitives) right and make them
look like the textbook examples, only to flounder as the multiple layers of glue needed to integrate all
that pretty code get thicker and thicker.

The thin-glue principle can be viewed as a refinement of the Rule of Separation. Policy (the
application logic) should be cleanly separated from mechanism (the domain primitives), but if thereis
alot of code that is neither policy nor mechanism, chances are that it is accomplishing very little
besides adding global complexity to the system.

Case Study: C Considered as Thin Glue

The C language itself is a good example of the effectiveness of thin glue.

In the late 1990s, Gerrit Blaauw and Fred Brooks observed in Computer Architecture: Concepts and
Evolution [BlaauwBrooks] that the architectures in every generation of computers, from early




mai nframes through minicomputers through workstations through PCs, had tended to converge. The
later a design was in its technology generation, the more closely it approximated what Blaauw &
Brooks called the “classical architecture”: binary representation, flat address space, a distinction
between memory and working store (registers), general-purpose registers, address resolution to fixed-

length bytes, two-address instructions, big-endi anness,[4—6] and data types a consistent set with sizesa
multiple of either 4 or 6 bits (the 6-bit families are now extinct).

Thompson and Ritchie designed C to be a sort of structured assembler for an idealized processor and
memory architecture that they expected could be efficiently modeled on most conventional
computers. By happy accident, their model for the idealized processor was the PDP-11, a particularly
mature and el egant minicomputer design that closely approximated Blaauw & Brooks's classical
architecture. By good judgment, Thompson and Ritchie declined to wire into their language most of

the few traits (such as little-endian byte order) where the PDP-11 didn't match it.[%/]

The PDP-11 became an important model for the following generations of microprocessor
architectures. The basic abstractions of C turned out to capture the classical architecture rather neatly.
Thus, C started out as agood fit for microprocessors and, rather than becoming irrelevant asits
assumptions fell out of date, actually became a better fit as hardware converged more closely on the
classical architecture. One notable example of this convergence was when Intel's 386, with its large
flat memory-address space, replaced the 286's awkward segmented-memory addressing after 1985;
pure C was actually a better fit for the 386 than it had been for the 286.

It is not a coincidence that the experimental erain computer architectures ended in the mid-1980s at
the same time that C (and its close descendant C++) were sweeping all before them as general-
purpose programming languages. C, designed as a thin but flexible layer over the classical
architecture, looks with two decades additional perspective like amost the best possible design for
the structured-assembler niche it was intended to fill. In addition to compactness, orthogonality, and
detachment (from the machine architecture on which it was originally designed), it also hasthe
important quality of transparency that we will discussin Chapter 6. The few language designs since
that are arguably better have needed to make large changes (like introducing garbage collection) in
order to get enough functional distance from C not to be swamped by it.

This history isworth recalling and understanding because C shows us how powerful a clean,
minimalist design can be. If Thompson and Ritchie had been less wise, they would have designed a
language that did much more, relied on stronger assumptions, never ported satisfactorily off its
original hardware platform, and withered away as the world changed out from under it. Instead, C has
flourished — and the example Thompson and Ritchie set has influenced the style of Unix
development ever since. As the writer, adventurer, artist, and aeronautical engineer Antoine de Saint-
Exupéry once put it, writing about the design of airplanes: «La perfection est atteinte non quand il ne
resterien a ajouter, mais quand il neresterien a enlever». (“ Perfection is attained not when there is
nothing more to add, but when there is nothing more to remove”.)

Ritchie and Thompson lived by this maxim. Long after the resource constraints on early Unix
software had eased, they worked at keeping C asthin alayer over the hardware as possible.



Dennis used to say to me, when | would ask for some particularly extravagant
featurein C, “If you want PL/1, you know where to get it”. He didn't have to
deal with some marketer saying “But we need a check in the box on the sales
viewgraph!”

-- Mike Lesk

The history of C isalso alesson in the value of having aworking reference implementation before
you standardize. Well return to this point in Chapter 17 when we discuss the evolution of C and Unix

standards.

[] The terms bi g-endian and little-endian refer to architectural choices about the order in which bits
are interpreted within a machine word. Though it has no canonical location, a Web search for On
Holy Wars and a Plea for Peace should turn up a classic and entertaining paper on this subject.

(1] The widespread belief that the autoincrement and autodecrement features entered C because they
represented PDP-11 machine instructions is a myth. According to Dennis Ritchie, these operations
were present in the ancestral B language before the PDP-11 existed.
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Libraries

One consequence of the emphasis that the Unix programming style put on modularity and well-
defined APIsis a strong tendency to factor programs into bits of glue connecting collections of
libraries, especially shared libraries (the equivalents of what are called dynamically-linked libraries or
DLLs under Windows and other operating systems).

If you are careful and clever about design, it is often possible to partition a program so that it consists
of a user-interface-handling main section (policy) and a collection of service routines (mechanism)
with effectively no glue at all. This approach is especially appropriate when the program hasto do a
lot of very specific manipulations of data structures like graphic images, network-protocol packets, or
control blocks for a hardware interface. Some good general architectural advice from within the Unix
tradition, particularly applicable to the resource-management challenges of this sort of library is
collected in The Discipline and Method Architecture for Reusable Libraries[VQ].

Under Unix, it isnormal practice to make thislayering explicit, with the service routines collected in
alibrary that is separately documented. In such programs, the front end gets to specialize in user-
interface considerations and high-level protocol. With alittle more care in design, it may be possible
to detach the original front end and replace it with others adapted for different purposes. Some other
advantages should become evident from our case study.

Thereisaflip sideto this. In the Unix world, libraries which are delivered as libraries should come
with exerciser programs.

APIs should come with programs, and vice versa. An API that you must write C
code to use, which cannot be invoked easily from the command line, is harder to
learn and use. And contrariwise, it'saroyal pain to have interfaces whose only
open, documented form is a program, so you cannot invoke them easily fromaC
program — for example, route(1) in older Linuxes.

-- Henry Spencer

Besides easing the learning curve, library exercisers often make excellent test frameworks.
Experienced Unix programmers therefore see them not just as a form of thoughtfulness to the
library's users but as an indication that the code has probably been well tested.

Animportant form of library layering isthe plugin, alibrary with a set of known entry pointsthat is
dynamically loaded after startup time to perform a specialized task. For plugins to work, the calling
program has to be organized largely as a documented service library that the plugin can call back into.

Case Study: GIMP Plugins



The GIMP (GNU Image Manipulation program) is a graphics editor designed to be driven through an
interactive GUI. But GIMP is built asalibrary of image-manipulation and housekeeping routines
called by arelatively thin layer of control code. The driver code knows about the GUI, but not
directly about image formats; the library routines reverse this by knowing about image formats and
operations but not about the GUI.

Thelibrary layer is documented (and, in fact shipped as “libgimp” for use by other programs). This
means that C programs called “plugins’ can be dynamically loaded by GIMP and call the library to
do image manipulation, effectively taking over control at the same level asthe GUI (see Figure 4.2).

Figure 4.2. Caller/calleerelationshipsin GIMP with a plugin loaded.

/ plugin \

GUL libgimp
—

GIMP

Plugins are used to perform lots of special-purpose transformations such as colormap hacking,
blurring and despeckling; also for reading and writing file formats not native to the GIMP core; for
extensions like editing animations and window manager themes; and for lots of other sorts of image-
hacking that can be automated by scripting the image-hacking logic in the GIMP core. A registry of
GIMP pluginsis available on the World Wide Web.

Though most GIMP plugins are small, ssimple C programs, it is also possible to write a plugin that
exposes the library API to a scripting language; we'll discuss this possibility in Chapter 11 when we

examine the ‘ polyvalent program’ pattern.
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Unix and Object-Oriented Languages

Since the mid-1980s most new language designs have included native support for object-oriented
programming (OO). Recall that in object-oriented programming, the functions that act on a particular
data structure are encapsul ated with the datain an object that can be treated as a unit. By contrast,
modules in non-O0 languages make the association between data and the functions that act on it
rather accidental, and modules frequently leak data or bits of their internals into each other.

The OO design concept initially proved valuable in the design of graphics systems, graphical user
interfaces, and certain kinds of ssmulation. To the surprise and gradual disillusionment of many, it
has proven difficult to demonstrate significant benefits of OO outside those areas. It's worth trying to
understand why.

There is some tension and conflict between the Unix tradition of modularity and the usage patterns
that have developed around OO languages. Unix programmers have always tended to be a bit more
skeptical about OO than their counterparts elsewhere. Part of thisis because of the Rule of Diversity;
OO has far too often been promoted as the One True Solution to the software-complexity problem.
But there is something else behind it as well, an issue which is worth exploring as background before
we eval uate specific OO (object-oriented) languages in Chapter 14. It will also help throw some

characteristics of the Unix style of non-OO programming into sharper relief.

We observed above that the Unix tradition of modularity is one of thin glue, aminimalist approach
with few layers of abstraction between the hardware and the top-level objects of a program. Part of
thisistheinfluence of C. It takes serious effort to simulate true objectsin C. Because that's so, piling
up abstraction layersis an exhausting thing to do. Thus, object hierarchiesin C tend to be relatively
flat and transparent. Even when Unix programmers use other languages, they tend to want to carry
over the thin-glue/shallow-layering style that Unix models have taught them.

OO0 languages make abstraction easy — perhaps too easy. They encourage architectures with thick
glue and elaborate layers. This can be good when the problem domain is truly complex and demands
alot of abstraction, but it can backfire badly if coders end up doing simple thingsin complex ways
just because they can.

All OO languages show some tendency to suck programmers into the trap of excessive layering.
Object frameworks and object browsers are not a substitute for good design or documentation, but
they often get treated as one. Too many layers destroy transparency: It becomes too difficult to see
down through them and mentally model what the code is actually doing. The Rules of Simplicity,
Clarity, and Transparency get violated wholesale, and the result is code full of obscure bugs and
continuing maintenance problems.

Thistendency is probably exacerbated because alot of programming courses teach thick layering as a



way to satisfy the Rule of Representation. In thisview, having lots of classesis equated with
embedding knowledge in your data. The problem with thisis that too often, the ‘smart data’ in the
glue layersis not actually about any natural entity in whatever the program is manipulating — it's just
about being glue. (One sure sign of thisis a proliferation of abstract subclasses or ‘mixins’.)

Another side effect of OO abstraction is that opportunities for optimization tend to disappear. For
example, a+a+a+acanbecomea* 4 and evena<< 2if aisaninteger. But if one creates aclass
with operators, there is nothing to indicate if they are commuitative, distributive, or associative. Since
one isn't supposed to look inside the object, it's not possible to know which of two equivalent
expressionsis more efficient. Thisisn't in itself a good reason to avoid using OO techniques on new
projects; that would be premature optimization. But it is reason to think twice before transforming
non-O0 code into a class hierarchy.

Unix programmers tend to share an instinctive sense of these problems. This tendency appears to be
one of the reasons that, under Unix, OO languages have failed to displace non-OO workhorses like C,
Perl (which actually has OO facilities, but they're not heavily used), and shell. There is more vocal
criticism of OO in the Unix world than orthodoxy permits elsewhere; Unix programmers know when
not to use OO; and when they do use OO languages, they spend more effort on trying to keep their
object designs uncluttered. As the author of The Elements of Networking Style once observed in a
dightly different context [Padlipsky]: “If you know what you're doing, three layersis enough; if you

don't, even seventeen levels won't help”.

One reason that OO has succeeded most where it has (GUIs, simulation, graphics) may be because
it'srelatively difficult to get the ontology of types wrong in those domains. In GUIs and graphics, for
example, there is generally arather natural mapping between manipulable visual objects and classes.
If you find yourself proliferating classes that have no obvious mapping to what goes on in the
display, it is correspondingly easy to notice that the glue has gotten too thick.

One of the central challenges of design in the Unix style is how to combine the virtue of detachment
(smplifying and generalizing problems from their original context) with the virtue of thin glue and
shallow, flat, transparent hierarchies of code and design.

WEe'I return to some of these points and apply them when we discuss object-oriented languages in
Chapter 14.

Prev Up Next
Libraries Home Coding for Modularity



Coding for Modularity
Prev Chapter 4. Modularity Next

Coding for Modularity

Modularity is expressed in good code, but it primarily comes from good design. Here are some
guestions to ask about any code you work on that might help you improve its modularity:

. How many global variables does it have? Global variables are modularity poison, an easy way

for components to leak information to each other in careless and promiscuous ways.[4—8]

. Isthesize of your individual modules in Hatton's sweet spot? If your answer is“No, many are
larger”, you may have along-term maintenance problem. Do you know what your own sweet
spot is? Do you know what it is for other programmers you are cooperating with? If not, best
be conservative and stick to sizes near the low end of Hatton's range.

. Aretheindividua functionsin your modulestoo large? Thisis not so much a matter of line
count asit is of internal complexity. If you can't informally describe a function's contract with

its callersin oneline, the function is probably too Iarge.[@]
Personally | tend to break up a subprogram when there are too many local
variables. Another clue is[too many] levels of indentation. | rarely ook at
length.
-- Ken Thompson
. Doesyour code have internal APIs— that is, collections of function calls and data structures
that you can describe to others as units, each sealing off some layer of function from the rest
of the code? A good APl makes sense and is understandable without looking at the
implementation behind it. The classic test isthis: Try to describe it to another programmer
over the phone. If you fail, it is very probably too complex, and poorly designed.
. Do any of your APIs have more than seven entry points? Do any of your classes have more
than seven methods each? Do your data structures have more than seven members?

. What isthe distribution of the number of entry points per module across the proj ect?> Does
it seem uneven? Do the modules with lots of entry points really need that many? Module
complexity tendsto rise as the square of the number of entry points, too — yet another reason
simple APIs are better than complicated ones.

Y ou might find it instructive to compare these with our checklist of questions about transparency, and
discoverability in Chapter 6.

(8] Globals also mean your code cannot be reentrant; that is, multiple instances in the same process
are likely to step on each other.

(49 Many years ago, | learned from Kernighan & Plauger's The Elements of Programming Style a
useful rule. Write that one-line comment immediately after the prototype of your function. For every



function, without exception.

9 A cheap way to collect thisinformation is to analyze the tags files generated by a utility like etags
(1) or ctags(1).
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Chapter 5. Textuality

Good Protocols Make Good Practice
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It's a well-known fact that computing devices such as the abacus wer e invented thousands of years
ago. But it's not well known that the first use of a common computer protocol occurred in the Old
Testament. This, of course, was when Moses aborted the Egyptians’ process with a control-sea.

-- TomGallowayr ec. arts. com cs, February 1992

In this chapter, we'll ook at what the Unix tradition has to tell us about two different kinds of design
that are closely related: the design of file formats for retaining application datain permanent storage,
and the design of application protocols for passing data and commands between cooperating



programs, possibly over a network.

What unifies these two kinds of design is that they both involve the serialization of in-memory data
structures. For the internal operation of computer programs, the most convenient representation of a
complex data structure is one in which all fields have the machine's native data format (e.g. two's-
complement binary for integers) and all pointers are actual memory addresses (as opposed, say, to
being named references). But these representations are not well suited to storage and transmission;
memory addresses in the data structure |ose their meaning outside memory, and emitting raw native
data formats causes interoperability problems passing data between machines with different
conventions (big- vs. little-endian, say, or 32-bit vs. 64-bit).

For transmission and storage, the traversable, quasi-spatial layout of data structures like linked lists
needs to be flattened or serialized into a byte-stream representation from which the structure can later
be recovered. The serialization (save) operation is sometimes called marshaling and its inverse (load)
operation unmarshaling. These terms are usually applied with respect to objects in an OO language
like C++ or Python or Java, but could be used with equal justice of operations like loading a graphics
fileinto the internal storage of a graphics editor and saving it out after modifications.

A significant percentage of what C and C++ programmers maintain is ad-hoc code for marshaling
and unmarshaling operations — even when the serialized representation chosenisassimple as a
binary structure dump (a common technigque under non-Unix environments). Modern languages like
Python and Java tend to have built-in unmarshal and marshal functions that can be applied to any
object or byte-stream representing an object, and that reduce this labor substantially.

But these nailve methods are often unsatisfactory for various reasons, including both the machine-
interoperability problems we mentioned above and the negative trait of being opaque to other tools.
When the application is a network protocol, economy may demand that an internal data structure
(such as, say, a message with source and destination addresses) be serialized not into a single blob of
data but into a series of attempted transactions or messages which the receiving machine may reject
(so that, for example, alarge message can be rejected if the destination addressis invalid).

Interoperability, transparency, extensibility, and storage or transaction economy: these are the
important themes in designing file formats and application protocols. Interoperability and
transparency demand that we focus such designs on clean data representations, rather than putting
convenience of implementation or highest possible performance first. Extensibility also favors textual
protocols, since binary ones are often harder to extend or subset cleanly. Transaction economy
sometimes pushes in the opposite direction — but we shall see that putting that criterion firstisa
form of premature optimization that it is often wiseto resist.

Finally, we must note a difference between data file formats and the run-control files that are often
used to set the startup options of Unix programs. The most basic difference is that (with sporadic
exceptions like GNU Emacs's configuration interface) programs don't normally modify their own run-
control files— the information flow is one-way, from file read at startup time to application settings.
Data-file formats, on the other hand, associate properties with named resources and are both read and
written by their applications. Configuration files are generally hand-edited and small, whereas data



files are program-generated and can become arbitrarily large.

Historically, Unix has related but different sets of conventions for these two kinds of representation.
The conventions for run control files are surveyed in Chapter 10; only conventions for datafiles are
examined in this chapter.
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The Importance of Being Textual

Pipes and sockets will pass binary data as well as text. But there are good reasons the examples welll
see in Chapter 7 are textual: reasons that hark back to Doug Mcllroy's advice quoted in Chapter 1.

Text streams are a valuable universal format because they're easy for human beings to read, write,
and edit without specialized tools. These formats are (or can be designed to be) transparent.

Also, the very limitations of text streams help enforce encapsulation. By discouraging elaborate
representations with rich, densely encoded structure, text streams also discourage programs from
being promiscuous with each other about their internal states and help enforce encapsulation. Well
return to this point at the end of Chapter 7 when we discuss RPC.

When you feel the urge to design acomplex binary file format, or acomplex binary application
protocol, it is generally wiseto lie down until the feeling passes. If performance is what you're
worried about, implementing compression on the text protocol stream either at some level below or
above the application protocol will give you a cleaner and perhaps better-performing design than a
binary protocol (text compresses well, and quickly).

A bad example of binary formatsin Unix history was the way device-
independent troff read a binary file containing device information, supposedly
for speed. Theinitial implementation generated that binary file from atext
description in a somewhat unportable way. Faced with a need to port ditroff
quickly to a new machine, rather than reinvent the binary goo, | ripped it out and
just had ditroff read the text file. With carefully crafted file-reading code, the
speed penalty was negligible.

-- Henry Spencer

Designing atextual protocol tends to future-proof your system. One specific reason is that ranges on
numeric fields aren't implied by the format itself. Binary formats usually specify the number of bits
allocated to a given value, and extending them is difficult. For example, IPv4 only allows 32 bits for

an address. To extend address size to 128 bits (as done by |Pv6) requires amajor revamping.2 In
contrast, if you need alarger value in atext format, just writeit. It may be that a given program can't
receive valuesin that range, but it's usually easier to modify the program than to modify all the data
stored in that format.

The only good justification for abinary protocol isif you're going to be manipulating large enough
data sets that you're genuinely worried about getting the most bit-density out of your media, or if
you're very concerned about the time or instruction budget required to interpret the datainto an in-
core structure. Formats for large images and multimedia are sometimes an example of the former, and
network protocols with hard latency requirements sometimes an example of the latter.



The reciprocal problem with SMTP or HTTP-like text protocolsis that they tend
to be expensive in bandwidth and slow to parse. The smallest X request is4
bytes: the smallest HTTP request is about 100 bytes. X requests, including
amortized overhead of transport, can be executed in the order of 100 instructions,
at one point, an Apache [web server] developer proudly indicated they were
down to 7000 instructions. For graphics, bandwidth becomes everything on
output; hardware is designed such that these days the graphics-card busis the
bottleneck for small operations, so any protocol had better be very tight if itis
not to be aworse bottleneck. Thisisthe extreme case.

-- Jim Gettys

These concerns are valid in other extreme cases aswell asin X — for example, in the design of
graphics file formats intended to hold very large images. But they are usually just another case of
premature-optimization fever. Textual formats don't necessarily have much lower bit density than
binary ones; they do after all use seven out of eight bits per byte. And what you gain by not having to
parse text, you generally lose the first time you need to generate atest load, or to eyeball a program-
generated example of your format and figure out what'sin there.

In addition, the kind of thinking that goes into designing tight binary formats tends to fall down on
making them cleanly extensible. The X designers experienced this:

Against the current X framework is the fact we didn't design enough of a
structure to make it easier to ignore trivial extensions to the protocol; we can do
this some of the time, but a bit better framework would have been good.

-- Jm Gettys

When you think you have an extreme case that justifies a binary file format or protocol, you need to
think very carefully about extensibility and leaving room in the design for growth.

Case Study: Unix Password File Format

On many operating systems, the per-user data required to validate logins and start a user's session is
an opague binary database. Under Unix, by contrast, it's a text file with records one per line and
colon-separated fields.

Example 5.1 consists of some randomly-chosen example lines:

Example 5.1. Password file example.

ganes: *:12: 100: ganes: / usr/ ganes:

gopher: *: 13: 30: gopher:/usr/li b/ gopher-dat a:
ftp:*:14:50: FTP User:/ hone/ftp:

esr: 0SnmFuPnH5JI Ns: 23: 23: Eric S. Raynond:/ hone/ esr:



nobody: *: 99: 99: Nobody: / :

Without even knowing anything about the semantics of the fields, we can notice that it would be hard
to pack the data much tighter in abinary format. The colon sentinel characters would have to have
functional equivalents taking at least as much space (usually either count bytes or NULS). The per-
user records would either have to have terminators (which could hardly be shorter than asingle
newline) or else be wastefully padded out to afixed length.

Actually the prospects for saving space through binary encoding pretty much vanish if you know the
actual semantics of the data. The numeric user 1D (3rd) and group ID (4th) fields are integers, thus on
most machines a binary representation would be at least 4 bytes, and longer than the text for values
up to 999. But let's agree to ignore this for now and suppose the best case that the numeric fields have
a0-255 range.

We could tighten up the numeric fields (3rd and 4th) by collapsing the numerics to single bytes, and
the password strings (2nd) to an 8-bit encoding. On this example, that would give about an 8% size
decrease.

That 8% of putative inefficiency buys usalot. It avoids putting an arbitrary limit on the range of the
numeric fields. It gives us the ability to modify the password file with any old text editor of our
choice, rather than having to build a specialized tool to edit a binary format (though in the case of the
password file itself, we have to be extra careful about concurrent edits). And it gives us the ability to
do ad-hoc searches and filters and reports on the user account information with text-stream tools such

asgrep(l).

We do have to be a bit careful about not embedding a colon in any of the textual fields. Good practice
isto tell the file write code to precede embedded colons with an escape character, and then to tell the
file read code to interpret it. Unix tradition favors backslash for this use.

The fact that structural information is conveyed by field position rather than an explicit tag makes
this format faster to read and write, but abit rigid. If the set of properties associated with akey is
expected to change with any frequency, one of the tagged formats described below might be a better
choice.

Economy is not a major issue with password files to begin with, as they're normally read sel dom(>2]

and infrequently modified. Interoperability is not an issue, since various data in the file (notably user
and group numbers) are not portable off the originating machine. For password files, it's therefore
quite clear that going where the transparency criterion leads was the right thing.

Case Study: . newsr ¢ Format

Usenet news is aworldwide distributed bulletin-board system that anticipated today's P2P networking
by two decades. It uses a message format very similar to that of RFC 822 electronic-mail messages,
except that instead of being directed to personal recipients messages are sent to topic groups. Articles



posted at any participating site are broadcast to each site that it has registered as a neighbor, and
eventually flood-fill to all news sites.

Almost all Usenet news readers understand the . newsr ¢ file, which records which Usenet messages
have been seen by the calling user. Though it is named like a run-control file, it is not only read at
startup but typically updated at the end of the newsreader run. The. newsr ¢ format has been fixed
since the first newsreaders around 1980. Example 5.2 is a representative section froma. newsr ¢

file.
Example5.2. A . newsr c example.

rec.arts.sf.msc! 1-14774, 14786, 14789

rec.arts.sf.reviews! 1-2534

rec.arts.sf.witten: 1-876513

news. answers! 1-199359, 213516, 215735

news. announce. newusers! 1-4399

news. newusers. questions! 1-645661

news. gr oups. questions! 1-32676

news. sof t war e. readers! 1-95504, 137265, 137274, 140059, 140091, 140117
alt.test! 1-1441498

Each line sets properties for the newsgroup named in the first field. The name isimmediately
followed by a character that indicates whether the owning user is currently subscribed to the group or
not; a colon indicates subscription, and an exclamation mark indicates nonsubscription. The
remainder of the line is a sequence of comma-separated article numbers or ranges of article numbers,
indicating which articles the user has seen.

Non-Unix programmers might have automatically tried to design afast binary format in which each
newsgroup status was described by either along but fixed-length binary record, or a sequence of self-
describing binary packets with internal length fields. The main point of such a binary representation
would be to express ranges with binary datain paired word-length fields, in order to avoid the
overhead of parsing all the range expressions at startup.

Such alayout could be read and written faster than atextual format, but it would have other
problems. A naive implementation in fixed-length records would have placed artificial length limits
on newsgroup names and (more seriously) on the maximum number of ranges of seen-article
numbers. A more sophisticated binary-packet format would avoid the length limits, but could not be
edited with the user's eyeballs and fingers — a capability that can be quite useful when you want to
reset just some of the read bitsin an individual newsgroup. Also, it would not necessarily be portable
to different machine types.

The designers of the original newsreader chose transparency and interoperability over economy. The
case for going in the other direction was not completely ridiculous; . newsr c files can get very
large, and one modern reader (GNOME's Pan) uses a speed-optimized private format to avoid startup
lag. But to other implementers, textual representation looked like a good tradeoff in 1980, and has



looked better as machines increased in speed and storage dropped in price.

Case Study: The PNG Graphics File Format

PNG (Portable Network Graphics) isafile format for bitmap graphics. It islike GIF, and unlike
JPEG, in that it uses lossless compression and is optimized for applications such asline art and icons
rather than photographic images. Documentation and open-source reference libraries of high quality
are available at the Portable Network Graphics website.

PNG is an excellent example of athoughtfully designed binary format. A binary format is appropriate
since graphics files may contain very large amounts of data, such that storage size and Internet
download time would go up significantly if the pixel data were stored textually. Transaction economy

was the prime consideration, with transparency sacrifi ced.>3] The des gners were, however, careful
about interoperability; PNG specifies byte orders, integer word lengths, endianness, and (lack of)
padding between fields.

A PNG file consists of a sequence of chunks, each in a self-describing format beginning with the
chunk type name and the chunk length. Because of this organization, PNG does not need arelease
number. New chunk types can be added at any time; the case of the first letter in the chunk type name
informs PNG-using software whether or not each chunk can be safely ignored.

The PNG file header also repays study. It has been cleverly designed to make various common kinds
of file corruption (e.g., by 7-bit transmission links, or mangling of CR and LF characters) easy to
detect.

The PNG standard is precise, comprehensive, and well written. It could serve as amodel for how to
write file format standards.

Pl Thereisa legend that some early airline reservation systems allocated exactly one byte for a
plane's passenger count. Supposedly they became very confused by the arrival of the Boeing 747, the
first plane that could carry more than 255 passengers.

2] Password files are normally read once per user session at login time, and after that occasionally
by file-system utilities like Is(1) that must map from numeric user and group IDs to names.

>3] Confusingly, PNG supports a different kind of transparency — transparent pixelsin the PNG
Image.
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Data File Metaformats

A datafile metaformat is a set of syntactic and lexical conventionsthat is either formally
standardized or sufficiently well established by practice that there are standard service libraries to
handle marshaling and unmarshaling it.

Unix has evolved or adopted metaformats suitable for awide range of applications. It is good practice
to use one of these (rather than an idiosyncratic custom format) wherever possible. The benefits begin
with the amount of custom parsing and generation code that you may be able to avoid writing by
using a service library. But the most important benefit is that devel opers and even many users will
instantly recognize these formats and feel comfortable with them, which reduces the friction costs of
learning new programs.

In the following discussion, when we refer to “traditional Unix tools’ we are intending the
combination of grep(1), sed(1), awk(1), tr(1), and cut(1) for doing text searches and transformations.
Perl and other scripting languages tend to have good native support for parsing the line-oriented
formats that these tools encourage.

Here, then, are the standard formats that can serve you as models.

DSV Style

DSV stands for Delimiter-Separated Values. Our first case study in textual metaformats was the /
et ¢/ passwd file, whichisa DSV format with colon as the value separator. Under Unix, colonis
the default separator for DSV formats in which the field values may contain whitespace.

/ et ¢/ passwd format (one record per line, colon-separated fields) is very traditional under Unix
and frequently used for tabular data. Other classic examplesincludethe/ et ¢/ gr oup file
describing security groupsand the/ et ¢/ i ni t t ab file used to control startup and shutdown of
Unix service programs at different run levels of the operating system.

Datafilesin this style are expected to support inclusion of colonsin the datafields by backslash
escaping. More generally, code that reads them is expected to support record continuation by
ignoring backslash-escaped newlines, and to allow embedding nonprintable character data by C-style
backslash escapes.

Thisformat is most appropriate when the data is tabular, keyed by a name (in thefirst field), and
records are typically short (less than 80 characterslong). It works well with traditional Unix tools.

One occasionally sees field separators other than the colon, such as the pipe character | or even an



ASCII NUL. Old-school Unix practice used to favor tabs, a preference reflected in the defaults for cut
(1) and paste(1); but this has gradually changed as format designers became aware of the many small
irritations that ensue from the fact that tabs and spaces are not visually distinguishable.

Thisformat isto Unix what CSV (comma-separated value) format is under Microsoft Windows and
elsewhere outside the Unix world. CSV (fields separated by commas, double quotes used to escape
commas, no continuation lines) israrely found under Unix.

In fact, the Microsoft version of CSV is atextbook example of how not to design atextual file
format. Its problems begin with the case in which the separator character (in this case, acomma) is
found inside afield. The Unix way would be to smply escape the separator with a backslash, and
have a double escape represent a literal backslash. This design gives us a single specia case (the
escape character) to check for when parsing the file, and only a single action when the escape is
found (treat the following character as aliteral). The latter conveniently not only handles the
separator character, but gives us away to handle the escape character and newlines for free. CSV, on
the other hand, encloses the entire field in double quotes if it contains the separator. If the field
contains double quotes, it must also be enclosed in double quotes, and the individual double quotesin
the field must themsel ves be repeated twice to indicate that they don't end the field.

The bad results of proliferating special cases are twofold. First, the complexity of the parser (and its
vulnerability to bugs) isincreased. Second, because the format rules are complex and underspecified,
different implementations diverge in their handling of edge cases. Sometimes continuation lines are
supported, by starting the last field of the line with an unterminated double quote — but only in some
products! Microsoft has incompatible versions of CSV files between its own applications, and in
some cases between different versions of the same application (Excel being the obvious example
here).

RFC 822 Format

The RFC 822 metaformat derives from the textual format of Internet electronic mail messages, RFC
822 isthe principal Internet RFC describing this format (since superseded by RFC 2822). MIME
(Multipurpose Internet Media Extension) provides away to embed typed binary data within RFC-822-
format messages. (Web searches on either of these names will turn up the relevant standards.)

In this metaformat, record attributes are stored one per line, named by tokens resembling mail header-
field names and terminated with a colon followed by whitespace. Field names do not contain
whitespace; conventionally a dash is substituted instead. The attribute value is the entire remainder of
the line, exclusive of trailing whitespace and newline. A physical line that begins with tab or
whitespace is interpreted as a continuation of the current logical line. A blank line may be interpreted
either as arecord terminator or as an indication that unstructured text follows.

Under Unix, thisisthe traditional and preferred textual metaformat for attributed messages or
anything that can be closely analogized to electronic mail. More generadly, it's appropriate for records
with avarying set of fields in which the hierarchy of datais flat (no recursion or tree structure).



Usenet news usesit; so dothe HTTP 1.1 (and later) formats used by the World Wide Web. It isvery
convenient for editing by humans. Traditional Unix search tools are still good for attribute searches,
though finding record boundaries will be alittle more work than in a record-per-line format.

One weakness of RFC 822 format is that when more than one RFC 822 message or record isput in a
file, the record boundaries may not be obvious — how is a poor literal-minded computer to know
where the unstructured text body of a message ends and the next header begins? Historically, there
have been several different conventions for delimiting messages in mailboxes. The oldest and most
widely supported, leading each message with aline that begins with the string " Fr om " and sender
information, is not appropriate for other kinds of records; it also requires that lines in message text
beginning with " Fr om " be escaped (typically with >) — a practice which not infrequently leads to
confusion.

Some mail systems use delimiter lines consisting of control characters unlikely to appear in

messages, such as several ASCII 01 (control-A) characters in succession. The MIME standard gets
around the problem by including an explicit message length in the header, but thisis afragile solution
which isvery likely to break if messages are ever manually edited. For a somewhat better solution,
see the record-jar style described later in this chapter.

For examples of RFC 822 format, look in your mailbox.
Cookie-Jar Format

Cookie-jar format is used by the fortune(1) program for its database of random quotes. It is
appropriate for records that are just bags of unstructured text. It ssmply uses newline followed by %86
(or sometimes newline followed by %) as a record separator. Example 5.3 is an example section from

afile of email signature quotes:
Example 5.3. A fortunefile example.

"Anmong the many m sdeeds of British rule in India, history will | ook
upon the Act depriving a whole nation of arns as the bl ackest."

-- Mohandas Gandhi, "An Autobi ography", pg 446
%
The people of the various provinces are strictly forbidden to have
I n their possession any swords, short swords, bows, spears,
firearms,
or other types of arns. The possession of unnecessary inplenents
makes difficult the collection of taxes and dues and tends to
f onent
upri si ngs.

-- Toyotom Hideyoshi, dictator of Japan, August 1588
%
“"One of the ordinary nodes, by which tyrants acconplish their
pur poses W thout resistance, is, by disarm ng the people, and



maki ng
it an offense to keep arns."
-- Suprene Court Justice Joseph Story, 1840

It is good practice to accept whitespace after %when looking for record delimiters. This helps cope
with human editing mistakes. It's even better practice to use %84 and ignore all text from %84to end-of -
line.

The cookie-jar separator was originally %84 n. | wanted something a bit more
visible than %would have been. In fact, any stuff after the %®cistreated asa
comment (or at least that's how | wrote it).

-- Ken Arnold

Simple cookie-jar format is appropriate for pieces of text that have no natural ordering,
distinguishable structure above word level, or search keys other than their text context.

Record-Jar Format

Cookie-jar record separators combine well with the RFC 822 metaformat for records, yielding a
format we'll call ‘record-jar’. If you need atextual format that will support multiple records with a
variable repertoire of explicit fieldnames, one of the least surprising and human-friendliest ways to do
it would look like Example 5.4.

Example 5.4. Basic data for three planetsin arecord-jar format.

Pl anet: Mercury

Orbital -Radi us: 57,910, 000 km

D aneter: 4,880 km

Mass: 3.30e23 kg

%80

Pl anet: Venus

Orbital -Radi us: 108, 200, 000 km
D ameter: 12,103.6 km

Mass: 4.869e24 kg

%80

Pl anet: Earth

Orbital -Radi us: 149, 600, 000 km
D ameter: 12, 756.3 km

Mass: 5.972e24 kg

Moons: Luna

Of course, the record delimiter could be a blank line, but aline consisting of "%84 n" is more explicit
and less likely to be introduced by accident during editing (two printable characters are better than
one because it can't be generated by a single-character typo). In aformat like thisit is good practice
to simply ignore blank lines.



If your records have an unstructured text part, your record-jar format is closely approaching a
mailbox format. In this case, it's important that you have a well-defined way to escape the record
delimiter so it can appear in text; otherwise, your record reader is going to choke on an ill-formed text
part someday. Some technique analogous to byte-stuffing (described later in this chapter) is indicated.

Record-jar format is appropriate for sets of field-attribute associations that are like DSV files, but
have a variable repertoire of fields, and possibly unstructured text associated with them.

XML

XML isavery simple syntax resembling HTML — angle-bracketed tags and ampersand-led literal
sequences. It is about as simple as a plain-text markup can be and yet express recursively nested data
structures. XML isjust alow-level syntax; it requires a document type definition (such as XHTML)
and associated application logic to give it semantics.

XML iswell suited for complex data formats (the sort of things for which the old-school Unix
tradition would use an RFC-822-like stanza format) though overkill for simpler ones. It is especialy
appropriate for formats that have a complex nested or recursive structure of the sort that the RFC 822
metaformat does not handle well. For a good introduction to the format, see XML in a Nutshell
[Harold-Meansg].

Among the hardest things to get right in designing any text file format are issues
of quoting, whitespace and other low-level syntax details. Custom file formats
often suffer from dlightly broken syntax that doesn't quite match other similar
formats. Using a standard format such as XML, which is verifiable and parsed by
astandard library, eliminates most of these issues.

-- Keith Packard

Example 5.5 isa simple example of an XML -based configuration file. It is part of the kdeprint tool
shipped with the open-source KDE office suite hosted under Linux. It describes options for an image-
to-PostScript filtering operation, and how to map them into arguments for a filter command. For
another instructive example, see the discussion of Glade in Chapter 8.

Example5.5. An XML example.

<?xm version="1.0"7?>
<kprintfilter nane="i maget ops">
<filtercomuand
data="i nagetops %Bilterargs %Bilterinput %ilteroutput” /

<filterargs>
<filterarg nane="center"



description="I mge centering"
format ="-nocenter” type="bool" default="true">
<val ue nane="true" description="Yes" />
<val ue nane="fal se" description="No" />
</filterarg>
<filterarg nane="turn"
description="Imge rotation"
format ="-%al ue" type="list" default="auto">
<val ue nane="aut 0" description="Automatic" />
<val ue nane="noturn" descripti on="None" />
<val ue nane="turn" description="90 deg" />
</filterarg>
<filterarg nane="scal e"
description="I mge scal e"
format ="-scal e %al ue”
type="fl oat"
m n="0. 0" max="1.0" defaul t="1.000" />
<filterarg nanme="dpi"
description="Imge resol ution”
format ="-dpi %al ue”
type="int" mn="72" max="1200" defaul t="300" />
</filterargs>
<filterinput>
<filterarg nane="file" format="%n" />
<filterarg nane="pipe" format="" />
</filterinput>
<filteroutput>
<filterarg nane="file" format="> %ut" />
<filterarg nane="pipe" format="" />
</filteroutput>
</ kprintfilter>

One advantage of XML isthat it is often possible to detect ill-formed, corrupted, or incorrectly
generated data through a syntax check, without knowing the semantics of the data.

The most serious problem with XML isthat it doesn't play well with traditional Unix tools. Software
that wants to read an XML format needs an XML parser; this means bulky, complicated programs.
Also, XML isitself rather bulky; it can be difficult to see the data amidst all the markup.

One application areain which XML is clearly winning isin markup formats for document files (wel'll
have more to say about thisin Chapter 18). Tagging in such documents tends to be relatively sparse
among large blocks of plain text; thus, traditional Unix tools still work fairly well for simple text
searches and transformations.



One interesting bridge between these worldsis PY X format — aline-oriented translation of XML
that can be hacked with traditional line-oriented Unix text tools and then losslessly translated back to
XML. A Web search for “Pyxie” will turn up resources. The xmltk toolkit takes the opposite tack,
providing stream-oriented tools analogous to grep(1) and sort(1) for filtering XML documents; Web
search for “xmltk” to find it.

XML can be asimplifying choice or acomplicating one. Thereisalot of hype surrounding it, but
don't become afashion victim by either adopting or rgjecting it uncritically. Choose carefully and
bear the KISS principle in mind.

Windows INI Format
Many Microsoft Windows programs use a textual data format that looks like Example 5.6. This
example associates optional resources named account ,di rectory,nuneric_i d, and

devel oper with named projects pyt hon, sng, f et chmai | , and py- howt 0. The DEFAULT
entry supplies values that will be used when a named entry fails to supply them.

Example5.6. A. I NI fileexample.

[ DEFAULT]

account = esr

[ pyt hon]

directory = /hone/ esr/cvs/ pyt hon/
devel oper =1

[ sng]

di rectory = /hone/ esr/ WWV sng/

nuneric id = 1012
devel oper =1

[fetchmail ]
nuneric _id = 18364

[ py- howt 0]

account = eric

directory = /home/ esr/cvs/ py-howt o/
devel oper =1

This style of data-file format is not native to Unix, but some Linux programs (notably Samba, the
suite of tools for accessing Windows file shares from Linux) support it under Windows's influence.
Thisformat is readable and not badly designed, but like XML it doesn't play well with grep(1) or
conventional Unix scripting tools.

The .INI format is appropriate if your data naturally fallsinto its two-level organization of name-



attribute pairs clustered under named records or sections. It's not good for data with afully recursive
treelike structure (XML is more appropriate for that), and it would be overkill for asimple list of
name-value associations (use DSV format for that).

Unix Textual File Format Conventions

There are long-standing Unix traditions about how textual dataformats ought to look. Most of these
derive from one or more of the standard Unix metaformats we've just described. It iswise to follow
these conventions unless you have strong and specific reasons to do otherwise.

In Chapter 10 we will discuss a different set of conventions used for program run-control files, but

you should notice that it will share some of these same rules (especially about the lexical level, the
rules by which characters are assembled into tokens).

. Onerecord per newline-terminated line, if possible. This makes it easy to extract records with
text-stream tools. For data interchange with other operating systems, it's wise to make your
file-format parser indifferent to whether the line ending isLF or CR-LF. It's aso conventional
to ignore trailing whitespace in such formats; this protects against common editor bobbles.

. Lessthan 80 characters per ling, if possible. This makes the format browseable in an ordinary-
sized terminal window. If many records must be longer than 80 characters, consider a stanza
format (see below).

. Use# asanintroducer for comments. It is good to have away to embed annotations and
comments in datafiles. It's best if they're actually part of the file structure, and so will be
preserved by tools that know its format. For comments that are not preserved during parsing, #
Isthe conventional start character.

. Support the backslash convention. The least surprising way to support embedding
nonprintable control charactersis by parsing C-like backslash escapes— \ n for anewline, \ r
for acarriagereturn,\ t for atab, \ b for backspace, \ f for formfeed, \ e for ASCI| escape
(27),\ nnn or\ onnn or \ Onnn for the character with octal value nnn, \ xnn for the
character with hexadecimal value nn, \ dnnn for the character with decimal value nnn, \ \
for aliteral backslash. A newer convention, but one worth following, isthe use of \ unnnn for
a hexadecimal Unicode literal.

« Inone-record-per-line formats, use colon or any run of whitespace as a field separator. The
colon convention seems to have originated with the Unix password file. If your fields must
contain instances of the separator(s), use a backslash as the prefix to escape them.

. Do not allow the distinction between tab and whitespace to be significant. Thisis arecipe for
serious headaches when the tab settings on your users' editors are different; more generally,
it's confusing to the eye. Using tab alone as afield separator is especially likely to cause
problems; allowing any run of tabs and spaces to be afield separator, on the other hand, works
well.

. Favor hex over octal. Hex-digit pairs and quads are easier to eyeball-map into bytes and
today's 32- and 64-bit words than octal digits of three bits each; also marginally more
efficient. This rule needs emphasizing because some older Unix tools such as od(1) violate it;
that's alegacy from the instruction field sizes in the machine languages of older PDP
minicomputers.



. For complex records, use a ‘stanza’ format: multiple lines per record, with a record separator
line of %84 n or % n. The separators make useful visual boundaries for human beings
eyeballing thefile.

. In stanza formats, either have one record field per line or use a record format resembling
RFC 822 electronic-mail headers, with colon-terminated field-name keywords leading fields.
The second choice is appropriate when fields are often either absent or longer than 80
characters, or when records are sparse (e.g., often with empty fields).

. In stanza formats, support line continuation. When interpreting the file, either discard
backslash followed by whitespace or interpret newline followed by whitespace equivalently to
asingle space, so that along logical line can be folded into short (easily editable!) physical
lines. It's also conventional to ignore trailing whitespace in these formats; this convention
protects against common editor bobbles.

. Either include a version number or design the format as self-describing chunks independent of
each other. If there is even the faintest possibility that the format will have to be changed or
extended, include a version number so your code can conditionally do the right thing on all
versions. Alternatively, design the format as self-describing chunks so that you can add new
chunk types without instantly breaking old code.

. Beware of floating-point round-off problems. Conversion of floating-point numbers from
binary to text format and back can lose precision, depending on the quality of the conversion
library you are using. If the structure you are marshaling/unmarshaling contains floating point,
you should test the conversion in both directions. If it looks like conversion in either direction
IS subject to roundoff errors, be prepared to dump the floating-point field as raw binary
instead, or a string encoding thereof. If you're coding in C or some language that has access to
C printf/scanf, the C99 %a specifier may solve this problem.

. Don't bother compressing or binary-encoding just part of the file. See below...

The Pros and Cons of File Compression

Many modern Unix projects, such as OpenOffice.org and AbiWord, now use XML compressed with
zip(1) or gzip(1) as adatafile format. Compressed XML combines space economy with some of the
advantages of atextual format — notably, it avoids the problem that binary formats must often
allocate space for information that may not be used in particular cases (e.g., for unusual options or
large ranges). But there is some dispute about this, dispute which turns on some of the central
tradeoffs discussed in this chapter.

On the one hand, experiments have shown that documentsin a compressed XML file are usually
significantly smaller than the Microsoft Word's native file format, a binary format that one might
imagine would take less space. The reason relates to a fundamental of the Unix philosophy: Do one
thing well. Creating a single tool to do the compression job well is more effective than ad-hoc



compression on parts of the file, because the tool can look across all the data and exploit all repetition
in the information.

Also, by separating the representation design from the particular compression method used, you leave
open the possibility of using different compression methods in the future with no more than minimal
changes to the actual file parsing — perhaps, with no changes at all.

On the other hand, compression does some damage to transparency. While a human being can
estimate from context whether uncompressing the file islikely to show him anything useful, tools
such asfile(1) cannot as of mid-2003 see through the wrapping.

Some would advocate a less structured compression format — straight gzip(1)-compressed XML
data, say, without the internal structure and self-identifying header chunk provided by zip(1). While
using aformat similar to that of zip(1) solves the identification problem, it means that decoding such
fileswill be tricky for programs written in the ssmpler scripting languages.

Any of these solutions (straight text, straight binary, or compressed text) may be optimal depending
on the relative weight you give to storage economy, discoverability, or making browsing tools as
simple as possible to write. The point of the preceding discussion is not to advocate any one of these
approaches over the others, but rather to suggest how you can think about the options and design
tradeoffs clearly.

This having been said, the truly Unixy solution would probably beto fix file(1) to seefile prefixes
through the compression — and, failing that, to write a shellscript wrapper around file(1) that would
interpret compression as a direction to apply gunzip(1l) and take a second look.
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Application Protocol Design

In Chapter 7, we'll discuss the advantages of breaking complicated applications up into cooperating

processes speaking an application-specific command set or protocol with each other. All the good
reasons for data file formats to be textual apply to these application-specific protocols as well.

When your application protocol is textual and easily parsed by eyeball, many good things become
easier. Transaction dumps become much easier to interpret. Test loads become easier to write.

Server processes are often invoked by harness programs such as inetd(8) in such away that the server
sees commands on standard input and ships responses to standard output. We describe this “ CLI
server” pattern in more detail in Chapter 11.

A CLI server with acommand set that is designed for ssmplicity has the valuable property that a
human tester will be able to type commands direct to the server process to probe the software's
behavior.

Another issue to bear in mind is the end-to-end design principle. Every protocol designer should read
the classic End-to-End Arguments in System Design [ Saltzer]. There are often serious questions about
which level of the protocol stack should handle features like security and authentication; this paper
provides some good conceptual tools for thinking about them. Y et athird issue is designing
application protocols for good performance. We'll cover that issue in more detail in Chapter 12.

The traditions of Internet application protocol design evolved separately from Unix before 1980.1>4
But since the 1980s these traditions have become thoroughly naturalized into Unix practice.

Well illustrate the Internet style by looking at three application protocols that are both among the
most heavily used, and are widely regarded among Internet hackers as paradigmatic: SMTP, POP3,
and IMAP. All three address different aspects of mail transport (one of the net's two most important
applications, along with the World Wide Web), but the problems they address (passing messages,
setting remote state, indicating error conditions) are generic to non-email application protocols as
well and are normally addressed using similar techniques.

Case Study: SMTP, the Simple Mail Transfer Protocol

Example 5.7 is an example transaction in SMTP (Simple Mail Transfer Protocol), which is described

by RFC 2821. In the example, C: lines are sent by a mail transport agent (MTA) sending mail, and S
lines are returned by the MTA receiving it. Text emphasized like this is comments, not part of the
actual transaction.



Example 5.7. An SM TP session example.

C. <client connects to service port 25>

C. HELO snark.thyrsus.com sendi ng host identifies self
S: 250 OK Hello snark, glad to neet you receiver acknow edges
C. MAIL FROM <esr @ hyrsus. conp I dentify sendi ng user
S: 250 <esr @hyrsus.conp... Sender ok recei ver acknow edges
C. RCPT TO cor@pny.com I dentify target user

S: 250 root... Recipient ok recei ver acknow edges
C. DATA

S: 354 Enter mail, end with "." on a line by itself

C. Scratch called. He wants to share

C. aroomwth us at Balticon.

C . end of nmultiline send
S: 250 WAAQ1865 Message accepted for delivery

C QUT sender signs off

S: 221 cpny.com cl osi ng connecti on recei ver disconnects
C

<cl i ent hangs up>

Thisis how mail is passed among Internet machines. Note the following features: command-
argument format of the requests, responses consisting of a status code followed by an informational
message, the fact that the payload of the DATA command is terminated by aline consisting of a
single dot.

SMTP is one of the two or three oldest application protocols still in use on the Internet. It isssmple,
effective, and has withstood the test of time. The traits we have called out here are tropes that recur
frequently in other Internet protocols. If there is any single archetype of what awell-designed Internet
application protocol looks like, SMTPIsit.

Case Study: POPS3, the Post Office Protocol

Another one of the classic Internet protocols is POP3, the Post Office Protocol. It is also used for
mail transport, but where SMTPisa‘push’ protocol with transactions initiated by the mail sender,
POP3isa‘pull’ protocol with transactions initiated by the mail receiver. Internet users with
intermittent access (like dial-up connections) can let their mail pile up on a mail-drop machine, then
use a POP3 connection to pull mail up the wire to their personal machines.

Example 5.8 is an example POP3 session. In the example, C: lines are sent by the client, and S lines
by the mail server. Observe the many similaritieswith SMTP. This protocol is also textual and line-
oriented, sends payload message sections terminated by aline consisting of a single dot followed by
line terminator, and even uses the same exit command, QUIT. Like SMTP, each client operation is
acknowledged by areply line that begins with a status code and includes an informational message
meant for human eyes.

Example 5.8. A POP3 example session.



<client connects to service port 110>

+OK POP3 server ready <1896.6971@mi | gat e. dobbs. org>
USER bob

+OK bob

PASS r edqueen

+OK bob's nmaildrop has 2 nessages (320 octets)
STAT

+OK 2 320

LI ST

+OK 2 nessages (320 octets)

1 120

2 200

RETR 1
+OK 120 octets
<t he POP3 server sends the text of nessage 1>

DELE 1

+OK nessage 1 del eted

RETR 2

+OK 200 octets

<t he POP3 server sends the text of nessage 2>

DELE 2

+OK nessage 2 del et ed

QT

+OK dewey POP3 server signing off (maildrop enpty)
<client hangs up>

There are afew differences. The most obvious one is that POP3 uses status tokens rather than
SMTP's 3-digit status codes. Of course the requests have different semantics. But the family
resemblance (one we'll have more to say about when we discuss the generic Internet metaprotocol
later in this chapter) is clear.

Case Study: IMAP, the Internet Message Access Protocol

To complete our triptych of Internet application protocol examples, we'll ook at IMAP, another post
office protocol designed in adlightly different style. See Example 5.9; as before, C: lines are sent by
the client, and S lines by the mail server. Text emphasized like this is comments, not part of the
actual transaction.

Example5.9. An IMAP session example.

C

<client connects to service port 143>



* OK exanple.com | MAP4revl v12. 264 server ready

A0001 USER "frobozz" "xyzzy"

* K User frobozz authenticated

A0002 SELECT | NBOX

* 1 EXI STS

* 1 RECENT

* FLAGS (\ Answered \Fl agged \Del eted \Draft \ Seen)

* OK [UNSEEN 1] first unseen nessage in /var/spool/mail/esr
A0002 OK [ READ-WRI TE] SELECT conpl et ed

A0003 FETCH 1 RF(C822. Sl ZE Get nessage sizes
* 1 FETCH (RFC822. SI ZE 2545)

A0003 OK FETCH conpl et ed

. A0004 FETCH 1 BODY[ HEADER] Get first nessage
header

S: * 1 FETCH (RFC822. HEADER {1425}

<server sends 1425 octets of nessage payl oad>

S )

S: A0004 OK FETCH conpl et ed

C. A0005 FETCH 1 BQODY[ TEXT] Get first nessage
body

S: * 1 FETCH (BODY[ TEXT] {1120}

<server sends 1120 octets of nessage payl oad>

)

* 1 FETCH (FLAGS (\ Recent \ Seen))

A0005 OK FETCH conpl et ed

A0006 LOGOUT

* BYE exanpl e.com | MAP4revl server term nating connection
A0006 OK LOEUT conpl et ed

<client hangs up>

IMAP delimits payloads in aslightly different way. Instead of ending the payload with a dot, the
payload length is sent just before it. This increases the burden on the server alittle bit (messages have
to be composed ahead of time, they can't just be streamed up after the send initiation) but makes life
easier for the client, which can tell in advance how much storage it will need to allocate to buffer the
message for processing as awhole.

Also, notice that each response is tagged with a sequence label supplied by the request; in this
example they have the form A00On, but the client could have generated any token into that slot. This
feature makesit possible for IMAP commands to be streamed to the server without waiting for the
responses; a state machine in the client can then simply interpret the responses and payloads as they
come back. This technigque cuts down on latency.

IMAP (which was designed to replace POP3) is an excellent example of a mature and powerful
Internet application protocol design, one well worth study and emulation.




>4 One relic of this pre-Unix history isthat Internet protocols normally use CR-LF asaline
terminator rather than Unix's bare LF.
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Application Protocol Metaformats

Just as data file metaformats have evolved to ssimplify serialization for storage, application protocol
metaformats have evolved to simplify serialization for transactions across networks. The tradeoffs are
alittle different in this case; because network bandwidth is more expensive than storage, thereis
more of a premium on transaction economy. Still, the transparency and interoperability benefits of
textual formats are sufficiently strong that most designers have resisted the temptation to optimize for
performance at the cost of readability.

The Classical Internet Application Metaprotocol

Marshall Rose's RFC 3117, On the Design of Application Protocol s,[i’] provides an excellent
overview of the design issuesin Internet application protocols. It makes explicit several of the tropes
in classical Internet application protocols that we observed in our examination of SMTP, POP, and
IMAP, and provides an instructive taxonomy of such protocols. It is recommended reading.

The classical Internet metaprotocol istextual. It uses single-line requests and responses, except for
payloads which may be multiline. Payloads are shipped either with a preceding length in octets or
with aterminator that istheline” . \ r\ n" . In the latter case the payload is byte-stuffed; all lines that
start with a period get another period prepended, and the receiver side is responsible for both
recognizing the termination and stripping away the stuffing. Response lines consist of a status code
followed by a human-readable message.

Onefina advantage of thisclassical styleisthat it isreadily extensible. The parsing and state-
machine framework doesn't need to change much to accommodate new requests, and it is easy to
code implementations so that they can parse unknown requests and return an error or ssimply ignore
them. SMTP, POP3, and IMAP have all been extended in minor ways fairly often during their
lifetimes, with minimal interoperability problems. Naively designed binary protocols are, by contrast,
notoriously brittle.

HTTP as a Universal Application Protocol

Ever since the World Wide Web reached critical mass around 1993, application protocol designers
have shown an increasing tendency to layer their special-purpose protocols on top of HTTP, using
web servers as generic service platforms.

Thisisaviable option because, at the transaction layer, HTTP is very simple and general. AN HTTP
request is amessage in an RFC-822/MIME-like format; typically, the headers contain identification
and authentication information, and the first line is a method call on some resource specified by a
Universal Resource Indicator (URI). The most important methods are GET (fetch the resource), PUT



(modify the resource) and POST (ship datato aform or back-end process). The most important form
of URI isaURL or Uniform Resource Locator, which identifies the resource by service type, host
name, and a location on the host. An HTTP response is simply an RFC-822/MIME message and can
contain arbitrary content to be interpreted by the client.

Web servers handle the transport and request-multiplexing layers of HTTP, as well as standard
service types like http and ftp. It isrelatively easy to write web server plugins that will handle custom
service types, and to dispatch on other elements of the URI format.

Besides avoiding alot of lower-level details, this method means the application protocol will tunnel
through the standard HT TP service port and not need a TCP/IP service port of its own. This can be a
distinct advantage; most firewalls leave port 80 open, but trying to punch another hole through can be
fraught with both technical and political difficulties.

With this advantage comes arisk. It means that your web server and its plugins grow more complex,
and cracksin any of that code can have large security implications. It may become more difficult to
isolate and shut down problem services. The usual tradeoffs between security and convenience apply.

RFC 3205, Onthe Use of HTTP Asa Substrate,[s—G] has good design advice for anyone considering
using HTTP as the underlayer of an application protocol, including a summary of the tradeoffs and
problems involved.

Case Study: The CDDB/ f r eedb. or g Database

Audio CDs consist of a sequence of music tracksin adigital format called CDDA-WAV. They were
designed to be played by very simple consumer-electronics devices afew years before general-
purpose computers devel oped enough raw speed and sound capability to decode them on the fly.
Because of this, thereis no provision in the format for even simple metainformation such as the
album and track titles. But modern computer-hosted CD players want this information so the user can
assemble and edit play lists.

Enter the Internet. There are (at least two) repositories that provide a mapping between a hash code
computed from the track-length table on a CD and artist/album-title/track-title records. The origina
was cddb. or g, but another site called f r eedb. or g which is probably now more complete and
widely used. Both sites rely on their users for the enormous task of keeping the database current as
new CDscome out; f r eedb. or g arose from a developer revolt after CDDB elected to take all that
user-contributed information proprietary .

Queriesto these services could have been implemented as a custom application protocol on top of
TCP/IP, but that would have required steps such as getting a new TCP/IP port number assigned and
fighting to get a hole for it punched through thousands of firewalls. Instead, the serviceis
implemented over HTTP asasimple CGI query (asif the CD's hash code had been supplied by a user
filling in aWeb form).

This choice makes al the existing infrastructure of HT TP and Web-access libraries in various



programming languages available to support programs for querying and updating this database. Asa
result, adding such support to a software CD player is nearly trivial, and effectively every software
CD player knows how to use them.

Case Study: Internet Printing Protocol

Internet Printing Protocol (IPP) is a successful, widely implemented standard for the control of
network-accessible printers. Pointers to RFCs, implementations, and much other related material are
available at the IETF's Printer Working Group site.

IPPuses HTTP 1.1 asatransport layer. All PP requests are passed viaan HTTP POST method call;
responses are ordinary HT TP responses. (Section 4.2 of RFC 2568, Rationale for the Structure of the
Model and Protocol for the Internet Printing Protocol, does an excellent job of explaining this
choice; it repays study by anyone considering writing a new application protocol.)

From the software side, HTTP 1.1 iswidely deployed. It aready solves many of the transport-level
problems that would otherwise distract protocol developers and implementers from concentrating on
the domain semantics of printing. It is cleanly extensible, so thereisroom for IPP to grow. The CGI
programming model for handling the POST requests is well understood and development tools are
widely available.

Most network-aware printers already embed a web server, because that's the natural way to make the
status of the printer remotely queryable by human beings. Thus, the incremental cost of adding IPP
service to the printer firmwareis not large. (Thisis an argument that could be applied to aremarkably

wide range of other network-aware hardware, including vending machines and coffee makerd>1 and
hot tubs!)

About the only serious drawback of layering IPP over HTTP is that the protocol is completely driven
by client requests. Thus there is no space in the model for printers to ship asynchronous alert
messages back to clients. (However, smarter clients could run atrivial HTTP server to receive such
alerts formatted as HT TP requests from the printer.)

BEEP: Blocks Extensible Exchange Protocol

BEEP (formerly BXXP) is ageneric protocol machine that competes with HTTP for the role of
universal underlayer for application protocols. There is a niche open because there is not as yet any
other more established metaprotocol that is appropriate for truly peer-to-peer applications, as opposed
to the client-server applications that HTTP handles well. A project website provides access to

standards and open-source implementations in several languages.

BEEP has features to support both client-server and peer-to-peer modes. The authors designed the
BEEP protocol and support library so that picking the right options abstracts away messy issues like
data encoding, flow control, congestion-handling, support of end-to-end encryption, and assembling a
large response composed of multiple transmissions,



Internally, BEEP peers exchange sequences of self-describing binary packets not unlike chunk types
in PNG. The design istuned more for economy and less for transparency than the classical Internet
protocols or HTTP, and might be a better choice when data volumes are large. BEEP also avoids the
HTTP problem that all requests have to be client-initiated; it would be better in situations in which a
server needs to send asynchronous status messages back to the client.

BEEP is still new technology in mid-2003, and has only afew demonstration projects. But the BEEP
papers are good analytical surveys of best practice in protocol design; even if BEEP itself failsto gain
widespread adoption, the papers will retain considerable tutorial value.

XML-RPC, SOAP, and Jabber

Thereis adeveloping trend in application protocol design toward using XML within MIME to
structure requests and payloads. BEEP peers use this format for channel negotiations. Three major
protocols are going the XML route throughout: XML-RPC and SOAP (Simple Object Access
Protocol) for remote procedure calls, and Jabber for instant messaging and presence. All three are
XML document types.

XML-RPC isvery much in the Unix spirit (its author observes that he learned how to program in the
1970s by reading the original source code for Unix). It's deliberately minimalist but nevertheless
quite powerful, offering away for the vast mgjority of RPC applications that can get by on passing
around scalar boolean/integer/float/string datatypes to do their thing in away that is lightweight and
easy to understand and monitor. XML-RPC's type ontology is richer than that of atext stream, but
still ssmple and portable enough to act as a valuable check on interface complexity. Open-source
implementations are available. An excellent XML-RPC home page points to specifications and

multiple open-source implementations.

SOAP is amore heavyweight RPC protocol with aricher type ontology that includes arrays and C-
like structs. It was inspired by XML-RPC, but has been plausibly accused of being an overdesigned
victim of the second-system effect. As of mid-2003 the SOAP standard is still awork in progress, but
atrial implementation in Apache is tracking the drafts. Open-source client modules in Perl, Python,
Tcl, and Java are readily discoverable by a Web search. The W3C draft specification is available on

the Web.

XML-RPC and SOAP, considered as remote procedure call methods, have some associated risks that
we discuss at the end of Chapter 7.

Jabber is a peer-to-peer protocol designed to support instant messaging and presence. What makes it
interesting as an application protocol is that it supports passing around XML forms and live
documents. Specifications, documentation, and open-source implementations are available at the
Jabber Software Foundation site.




[%9] See RFC 3117.

[%8] See REC 3205.

[27] See RFC 2324 and RFC 2325.
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Beauty is more important in computing than anywhere else in technology because software is so
complicated. Beauty is the ultimate defense against complexity.

-- David Gelernter Machine Beauty: Elegance and the Heart of Technology (1998)

In the previous chapter we discussed the importance of textual data formats and application protocols,
representations that are easy for human beings to examine and interact with. These promote qualities
in design that are much valued in the Unix tradition but seldom if ever talked about explicitly:
transparency and discoverability.

Software systems are transparent when they don't have murky corners or hidden depths.
Transparency is apassive quality. A program is transparent when it is possible to form asimple
mental model of its behavior that is actually predictive for al or most cases, because you can see
through the machinery to what is actually going on.

Software systems are discoverable when they include features that are designed to help you build in
your mind a correct mental model of what they do and how they work. So, for example, good



documentation helps discoverability to a user. Good choice of variable and function names helps
discoverability to a programmer. Discoverability is an active quality. To achieveit in your software

you cannot merely fail to be obscure, you have to go out of your way to be helpful 28

Transparency and discoverability are important for both users and software developers. But they're
important in different ways. Users like these propertiesin a Ul because they mean an easier learning
curve. Ul transparency and discoverability are alarge part of what people mean when they say aUl is
‘intuitive’; most of the rest isthe Rule of Least Surprise. We'll examine the properties that make user
interfaces pleasant and effective in more depth in Chapter 11.

Software developers like these qualities in the code itself (the part users don't see) because they so
often need to understand it well enough to modify and debug it. Also, a program designed so that its
internal dataflows are readily comprehensible is more likely to be one that does not fail because of
bad interactions that the designer didn't notice, and more likely to be able to evolve forward
gracefully (including accommodating change when new maintainers pick up the baton).

Transparency is amajor component of what David Gelernter refers to as “beauty” in this chapter's
epigraph. Unix programmers, borrowing from mathematicians, often use the more specific term
“elegance’ for the quality Gelernter speaks of. Elegance is a combination of power and simplicity.
Elegant code does much with little. Elegant code is not only correct but visibly, transparently correct.
It does not merely communicate an algorithm to a computer, but also conveys insight and assurance
to the mind of ahuman that reads it. By seeking elegance in our code, we build better code. Learning
to write transparent code is afirst, long step toward learning how to write elegant code — and taking
care to make code discoverable helps us learn how to make it transparent. Elegant code is both
transparent and discoverable.

It may be easier to appreciate the difference between transparency and discoverability with apair of
extreme examples. The Linux kernel source is remarkably transparent (given the intrinsic complexity
of what it does) but not at all discoverable — acquiring the minimum knowledge needed to live in the
code and understand the idiom of the developersis difficult, but once you do the whole makes sense.

4 On the other hand, the Emacs Lisp libraries are discoverable but not transparent. It's easy to
acquire enough knowledge to tweak just one thing, but quite difficult to comprehend the whole
system.

In this chapter, we'll examine features of Unix designs that promote transparency and discoverability
not just in Uls but in the parts users don't normally see. We'll develop some useful rules you can
apply to your coding and development practice. Later on, in Chapter 19 we'll see how good release-
engineering practices (like having a README file with appropriate content) can make your source
code as discoverable as your design.

If you need a practical reminder why these qualities are important, remember that the sanity you save
by writing transparent, discoverable systems may well be that of your own future self.




[ An economically-minded friend comments: “ Discoverability is about reducing barriers to entry:

transparency is about reducing the cost of living in the code”.

[ The Linux kernel makes a number of attempts at discoverability, including the Documentation
subdirectory in the Linux kernel source tarball and quite a number of tutorial websites and books.
These attempts are frustrated by the speed at which the kernel changes; the documentation has a
chronic tendency to fall behind.
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Studying Cases

Normal practice in this book has been to intersperse case studies with philosophy. But in this chapter we'll begin by looking
at several Unix designs that exhibit transparency and discoverability, and attempt to draw lessons from them only after all
have been presented. Each major point of the analysisin the latter half of this chapter draws on several of these, and the
arrangement avoids forward references to case studies the reader hasn't seen yet.

Case Study: audacity

First, well look at an example of transparency in Ul design. It is audacity, an open-source editor for sound files that runs on
Unix systems, Mac OS X, and Windows. Sources, downloadable binaries, documentation, and screen shots are available at

the project site.
This program supports cutting, pasting, and editing of audio samples. It supports multitrack editing and mixing. The Ul is

superbly simple; the sound waveforms are shown in the audacity window. The image of the waveform can be cut and
pasted; operations on that image are directly reflected in the audio sample as soon as they are performed.

Figure 6.1. Screen shot of audacity.

E‘l"" tracksland2
File Edit Wiew Project Effect Help

e p r r r
-1.0m 0.0rn 1.0m 2.0rm 3.0 4.0m
| I 1 | 1 I 1 | 1 I 1 | 1 | 1 | 1 | 1

| dudio Track w
Stereo, 44100Hz

fdute Solo

1.0

Click and drag to select audio
Project rate: 44100

Multitrack editing is supported in the simplest possible way; the screen splits into multiple per-track displaysin a spatial
relationship that conveys their concurrency and makes it easy to match features by inspection. Tracks can be dragged right
or left with the mouse to change their relative timing.



Several features of this Ul are subtly excellent and worthy of emulation: the large, easily visible and clickable operation
buttons with distinguishing colors, the presence of an undo command that removes most of the risk from experimentation,
the volume dlider that makes softness/loudness visually obvious in its shape.

But these are details. The central virtue of this program isthat it has a superbly transparent and natural user interface, one
that erects as few barriers between the user and the sound file as possible.

Case Study: fetchmail's - v option

fetchmail is a network gateway program. Its main purpose is to transate between POP3 or IMAP remote-mail protocols and
the Internet's native SM TP protocol for email exchange. It isin extremely widespread use on Unix machines that use
intermittent SL1P or PPP connections to Internet service providers, and as such probably touches an appreciable fraction of
the Internet's mail traffic.

fetchmail has no fewer than 60 command-line options (which, as we'll establish later in this book, is probably too many),
and a number of other options that are settable from the run-control file but not from the command line. Of all these, the
most important — by far — is- v, the verbose option.

When - v ison, fetchmail dumps each one of its POP, IMAP, and SMTP transactions to standard output as they happen. A
developer can actually see the code doing protocol with remote mailservers and the mail transport program it forwards to,
inreal time. Users can send session transcripts with their bug reports. Example 6.1 shows a representative session transcript.

Example 6.1. An example fetchmail - v transcript.

fetchmail: 6.1.0 querying hurkle.thyrsus.com (protocol | NMAP)
at Mon, 09 Dec 2002 08:41:37 -0500 (EST): poll started

fetchmail: running ssh % /usr/sbin/impd
(host hurkl e.thyrsus.com service i nmap)

fetchmail: | MAP< * PREAUTH [42.42.1.0] | MAP4revl v12. 264 server ready

fetchmail: | MAP> A0O001 CAPABILITY

fetchmail: | MAP< * CAPABI LI TY | MAP4 | MAPAREV1 NAMESPACE | DLE SCAN
SORT MAI LBOX- REFERRALS LOG N- REFERRALS AUTH=LOG N
THREAD=CRDEREDSUBJ ECT

fetchmail: | MAP< A0O001 OK CAPABI LI TY conpl eted

fetchmail: | MAP> A0002 SELECT "I NBOX"

fetchmail: 1 MAP< * 2 EXI STS

fetchmail: | MAP< * 1 RECENT

fetchmail: I MAP< * OK [ U DVALI DI TY 1039260713] U D validity status

fetchmail: | MAP< * OK [ Ul DNEXT 23982] Predicted next U D

fetchmail: | MAP< * FLAGS (\ Answered \Fl agged \Del eted \Draft \ Seen)

fetchmail: | MAP< * OK [ PERMANENTFLAGS

(\* \VAnswered \Fl agged \Deleted \Draft \Seen)]
Per manent fl ags

fetchmail: I MAP< * OK [UNSEEN 2] first unseen in /var/spool/nmail/esr
fetchmail: | MAP< A0002 OK [ READ- WRI TE] SELECT conpl et ed

fetchmail: | MAP> A0003 EXPUNGE

fetchmail: | MAP< A0O003 OK Mai |l box checkpoi nted, no nessages expunged
fetchmail: | MAP> A0004 SEARCH UNSEEN

fetchmail: | MAP< * SEARCH 2

fetchmail: | MAP< A0004 OK SEARCH conpl et ed

2 nmessages (1 seen) for esr at hurkle.thyrsus.com

fetchmail: | MAP> AO005 FETCH 1:2 RFC822. S| ZE

fetchmail: I MAP< * 1 FETCH (RFC822. SI ZE 2545)

fetchmail: I MAP< * 2 FETCH (RFC822. SI ZE 8328)



fetchmail: | MAP< A0005 OK FETCH conpl et ed

ski ppi ng message esr @urkl e.thyrsus.com 1 (2545 octets) not flushed

fetchmail: | MAP> A0O006 FETCH 2 RFC822. HEADER

fetchmail: | MAP< * 2 FETCH ( RFC822. HEADER {1586}

readi ng nessage esr@urkle.thyrsus.com?2 of 2 (1586 header octets)

fetchmail: SMIP< 220 snark.thyrsus.com ESMIP Sendmai | 8.12.5/8.12.5;
Mon, 9 Dec

2002 08:41:41 -0500

fetchmail: SMIP> EHLO | ocal host
fetchmail: SMIP< 250-snark.thyrsus. com

Hell o | ocal host [127.0.0.1], pleased to neet you
fetchmail: SMIP< 250- ENHANCEDSTATUSCODES
fetchmail: SMIP< 250-8BI TM ME
fetchmai |l : SMIP< 250- Sl ZE
fetchmail: SMIP> MAI L FROM <mutt - dev- owner @mutt. org> SI ZE=8328
fetchmail: SMIP< 250 2.1.0 <mutt-dev-owner @mutt.org>. .. Sender ok
fetchmail: SMIP> RCPT TO. <esr @ ocal host >
fetchmail: SMIP< 250 2.1.5 <esr@ocal host>... Recipient ok
fetchmail : SMIP> DATA

fetchmail: SMIP< 354 Enter mail, end with "." on a line by itself
#

fetchmail: | MAP< )

fetchmail: | MAP< A0O006 OK FETCH conpl et ed

fetchmail: | MAP> AO007 FETCH 2 BODY. PEEK[ TEXT]

fetchmail: | MAP< * 2 FETCH ( BODY[ TEXT] {6742}

*k k% *k k%
(6742 body OCtetS) ***************** *kkkkk*k ****************.
khkkkhkkhhkkhkkhkhkkhhkkhhkhkkhhkhhkhhhkhhkhhkhkhhkhhk,k *khhkhkkhkhkkhhkhhkhkkhhkhhkhkhkkhhkhkhk*, *)khkkikkhkkkkx*%

khkkkhkkkhhkhkkhk kkhkkhkhkkhhkkhkhkhkkhhkhhkhhkhkkhhkhhkhkhk kkhkkhkkhkhkkhkkikkhkkkk*k

fetchmail: | MAP< )

fetchmail: | MAP< AO007 OK FETCH conpl et ed

fetchmail: SMIP>. (EOM

fetchmail: SMIP< 250 2.0.0 gB9ffW08245 Message accepted for delivery
fl ushed

fetchmail: | MAP> A0O008 STORE 2 +FLAGS (\ Seen \Del et ed)
fetchmail: | MAP< * 2 FETCH (FLAGS (\ Recent \ Seen \Del eted))
fetchmail: | MAP< A0O008 OK STORE conpl et ed

fetchmail: | MAP> A0009 EXPUNGE

fetchmail: | MAP< * 2 EXPUNGE

fetchmail: I MAP< * 1 EXI STS

fetchmail: |1 MAP< * 0 RECENT

fetchmail: | MAP< AO009 OK Expunged 1 nessages

fetchmail: | MAP> A0010 LOGOUT

fetchmail: | MAP< * BYE hurkle | MAP4revl server term nating connection
fetchmail: | MAP< A0010 OK LOGOUT conpl et ed

fetchmail: 6.1.0 querying hurkle.thyrsus.com (protocol | NMAP)

at Mon, 09 Dec 2002 08:41:42 -0500: poll conpleted
fetchmail: SMIP> QUI T
fetchmail: SMIP< 221 2.0.0 snark.thyrsus.com cl osing connection
fetchmail: normal termnation, status O

The - v option makes what fetchmail is doing discoverable (by letting you see the protocol exchanges). Thisisimmensely
useful. | considered it so important that | wrote special code to mask account passwords out of - v transaction dumps so that
they could be passed around and posted without anyone having to remember to edit sensitive information out of them.

Thisturned out to be agood call. At least eight out of ten problems reported get diagnosed within seconds of a



knowledgeable person's eyes seeing a session transcript. There are severa knowledgeabl e people on the fetchmail mailing
list — in fact, because most bugs are easy to diagnose, | seldom have to handle them myself.

Over the years, fetchmail has acquired a reputation as a rather bulletproof program. It can be misconfigured, but it very
seldom outright breaks. Betting that this has nothing to do with the fact that the exact circumstances of eight out of ten bugs
are rapidly discoverable would not be smart.

We can learn from this example. The lesson isthis: Don't let your debugging tools be mere afterthoughts or treat them as
throwaways. They are your windows into the code; don't just knock crude holes in the walls, finish and glaze them. If you
plan to keep the code maintained, you're always going to need to let light into it.

Case Study: GCC

GCC, the GNU C compiler used on most modern Unixes, is perhaps an even better example of engineering for
transparency. GCC is organized as a sequence of processing stages knit together by adriver program. The stages are:
preprocessor, parser, code generator, assembler, and linker.

Each of the first three stages takes in areadable textual format and emits a readable textual format (the assembler hasto
emit and the linker to accept binary formats, pretty much by definition). With various command-line options of the gcc(1)
driver, you can see not just the results after C preprocessing, after assembly generation, and after object code generation —
but you can also monitor the results of many intermediate steps in parsing and code generation.

Thisis exactly the structure of cc, the first (PDP-11) C compiler.
-- Ken Thompson

There are many benefits of this organization. One that is particularly important for GCC is regression testi ng.[@] Because

most of the various intermediate formats are textual, deviations from expected resultsin aregression test are easily spotted
and analyzed using simple textual diff operations on the intermediate results; there is no need for specialist dump-analysis
tools that may well harbor their own bugs, and in any case would represent an additional maintenance burden.

The design pattern to extract from this example is that the driver program has monitoring switches that merely (but
sufficiently) expose the textual data flows among the components. As with fetchmail's - v option, these options are not
afterthoughts; they are designed in for discoverability.

Case Study: kmail

kmail isthe GUI mailreader distributed with the KDE environment. The kmail Ul is tastefully and well designed, with
many good features including automatic display of enclosed imagesin a MIME multipart and support for PGP key
encryption/decryption. It is friendly to end-users — my beloved but nontechie wife uses and enjoysiit.

Many mail user agents make one gesture in the direction of discoverability by having a command that toggles display of al
the mail headers, as opposed to a select few like From and Subject. The Ul of kmail takes this along step further.

A running kmail displays status notifications in a one-line subwindow at the bottom of its window, in small type over a
steel-gray background clearly modeled on the Netscape/Mozilla status bar. When you open a mailbox, for example, the
status bar displays counts of total and unread messages. The visual presentation is unobtrusive; it is easy to ignore the
notifications, but also easy to focus on them if you want to.

Figure 6.2. Screen shot of kmail.
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The kmail GUI is good user-interface design. It's informative, but not distracting; it gets around the reason we adduce in
Chapter 11 that the best policy for Unix tools operating normally is usually silence. The authors showed excellent taste in

borrowing the look and feel of the browser status bar.

But the extent of the kmail developers' tastefulness will not become clear until you have to troubleshoot an installation that
is having trouble sending mail. If you watch closely during the send, you will observe that each line of the SMTP
transaction with the remote mail transport is echoed into the kmail status bar as it happens.

The kmail developers neatly avoid atrap that often makes GUI programs like kmail aterrible pain in atroubleshooter's
fundament. Most design teams with kmail's objectives would have suppressed those messages entirely, fearing that they
would give Aunt Tillie atouch of the vapors that would drive her back to the meretricious pseudo-simplicity of a Windows
box.

Instead, they designed for transparency — they made the transaction messages show, but also made them visually easy to
ignore. By getting the presentation right, they managed to please both Aunt Tillie and her geeky nephew Melvin who fixes
her computer problems. Thiswas brilliant; it's a technique other GUI interfaces could and should emul ate.

Ultimately, of course, the visibility of those messagesis good for Aunt Tillie, because they mean Melvin isfar lesslikely to
throw up his hands in frustration while trying to solve her email problems.



The lesson here is clear. Dumbing down your Ul is only the half-smart thing to do. The really smart thing isto find away
to leave the details accessible, but make them unobtrusive.

Case Study: SNG

The program sng translates between PNG format and an all-text representation of it (SNG or Scriptable Network Graphics
format) that can be examined and modified with an ordinary text editor. Run on aPNG file, it produces an SNG file; run on
an SNG file, it recovers the equivalent PNG. The transformation is 100% faithful and lossless in both directions.

In syntactic style, SNG resembles CSS (Cascading Style Sheets), another language for controlling presentation of graphics,
this makes at least a gesture in the direction of the Rule of Least Surprise. Here is atest example:

Example 6.2. An SNG Example.

#SNG This is a synthetic SNGtest file

# Qur first test is a paletted (type 3) imge.
| HDR: {

wi dt h: 16;

hei ght: 19;

bi t dept h: 8;

usi ng color: palette;

with interl ace;

}

# Sanple bit depth chunk
sBIT: {

red: 8;

green: 8;

bl ue: 8;
}

# An exanple palette: three colors, one of which
# we wi Il render transparent
PLTE: {

(0, 0, 255)

(255, 0, 0)

"dark slate gray",

}

# Suggested palette

SPLT {
nanme: "A random suggested palette"”;
depth: 8;
(0, 0, 255), 255, 7,

(255, 0, 0), 255, 5;
( 70, 70, 70), 255, 3;
}

# The viewer will actually use this..
| MAGE: {
pi xel s base64
2222222222222222
2222222222222222



0000001111100000
0000011111110000
0000111001111000
0001110000111100
0001110000111100
0000110001111000
0000000011110000
0000000111100000
0000001111000000
0000001111000000
0000000000000000
0000000110000000
0000001111000000
0000001111000000
0000000110000000
2222222222222222
2222222222222222

}

tEXt: { # Ordinary text chunk
keyword: "Title";
text: "Sanple SNG script”;

}

# Test file ends here

The point of thistool isto enable usersto edit various obscure PNG chunk types that are not necessarily supported by
conventional graphics editors. Rather than writing special-purpose code to grovel through the PNG binary format, the user
can simply flip an image into an all-text representation, edit that, and massage it back. Another potential applicationisin
making images amenable to version control; under most version-control systems, text files are much easier to manage than
binary blobs, and diff operations on SNG representations actually have some possibility of yielding useful information.

The gains here go beyond the time not spent writing special-purpose code for manipulating binary PNGs, however. The
code of the sng program itself is not especially transparent, but it promotes transparency in larger systems of programs by
making the entire contents of PNGs discoverable.

Case Study: The Terminfo Database

The terminfo database is a collection of descriptions of video-display terminals. Each entry describes the escape sequences
that perform various manipulations on the terminal screen, such asinserting or deleting lines, erasing from the cursor
position to end of line or screen, or beginning and ending screen highlights such as reverse video, underline, or blink.

The terminfo database is primarily used by the curses(3) libraries. These underlie the “roguelike” interface style we discuss
in Chapter 11, and some very widely used programs such as mutt(1), lynx(1), and slrn(1). Though the terminal emulators
such as xterm(1) that run on today's bitmapped displays all have capabilities that are minor variations on those of the ANS|
X3.64 standard and the venerable VT100 terminal, thereis still enough variation that hardwiring ANSI capabilities into
applications would be abad idea. Terminfo is aso worth studying because problems that are logically similar to the one it
addressed arise constantly in managing other kinds of peripheral hardware that doesn't have a standard way to report their
own capabilities.

The design of terminfo benefits from experience with an earlier capability format called termcap. The database of termcap
descriptions lived in atextual format in one big file, / et ¢/ t er ntap; though this format is now obsolete, your Unix
system almost certainly includes a copy.

Normally, the key used to look up your terminal type entry is the environment variable TERM which for purposes of this



case study is set by magic.[ﬂ] Applications that use terminfo (or termcap) pay a small penalty in startup lag; when the
curses(3) library initializes itself, it has to look up the entry corresponding to TERMand |load the entry into memory.

Experience with termcap showed that the startup penalty was dominated by the time required to parse the textual
representation of capabilities. Accordingly, terminfo entries are binary structure dumps that can be marshaled and
unmarshaled more quickly. There is a master textual format for the entire database, the terminfo capability file. That file (or
individual entries) can be compiled to binary form with the terminfo compiler tic(1); binary entries can be decompiled to
the editable text format by infocmp(1).

The design superficially contradicts the advice we gave in Chapter 5 against binary caches, but this is actually the extreme
case in which that's a good tactic. Editsto the text masters are very rare — in fact, Unixes normally ship with the terminfo

database precompiled and the text master serving primarily as documentation. Thus, the synchronization and inconsistency
problems that would normally militate against this approach aimost never arise.

The designers of terminfo could have optimized for speed in a second way. The entire database of binary entries could have
been put in some kind of big opaque database file. What they actually did instead was more clever and more in the Unix
spirit. Terminfo entrieslive in adirectory hierarchy, usually on modern Unixes under / usr / shar e/ t er mi nf 0. Consult
the terminfo(5) man page to find the location on your system.

If you look in the terminfo directory, you'll see subdirectories named by single printable characters. Under each of these are
the entries for each terminal type that has a name beginning with that letter. The goal of this organization was to avoid
having to do alinear search of avery large directory; under more modern Unix file systems, which represent directories
with B-trees or other structures optimized for fast lookup, the subdirectories won't be necessary.

| found that even on afairly modern Unix, splitting a big directory up into subdirectories can
improve performance substantially. It was tens of thousands of files, an authorized-user database
for abig educational institution, on alate-model DEC Alpha running DEC's Unix. (Subdirectories
named by first and last |etter of name — e.g., "johnson" would bein directory "j_n" — worked
best of the schemes we tested. Using the first two letters wasn't nearly as good, because there were
alot of systematically-generated names which differed only toward the end.) This may just say
that sophisticated directory indexing is still not as common asit should be... but even so, that
makes an organization which works well without it more portable than one which requiresit.

-- Henry Spencer

Thus, the cost of opening aterminfo entry istwo file system lookups and a file open. But since mining the same entry from
one big database would have required alookup and open for the database, the incremental cost for terminfo's organization
isat most one file system lookup. Actually, it's less than that; it's the cost difference between one file system lookup and
whatever retrieval method the one big database would have used. Thisis probably marginal, and quite tolerable once per
application at startup time.

Terminfo uses the file system itself as a simple hierarchical database. Thisis a superb bit of constructive laziness, obeying
the Rule of Economy and the Rule of Transparency. It means that all the ordinary tools for navigating, examining and
modifying the file system can be used to navigate, examine, and modify the terminfo database; no special ones (other than
tic(1) and infocmp(2) for packing and unpacking the individual records) need to be written and debugged. It also means that
work on speeding up database access would be work on speeding up the file system itself, tuning that would benefit many
more applications than just users of curses(3).

There is one additional advantage of this organization that doesn't come up in the terminfo case; you get to use Unix's
permissions mechanism rather than having to invent your own access-control layer with its own bugs. Thisfalls out asa
conseguence of adopting the “everything isafile” philosophy of Unix rather than trying to fight it.

The terminfo directory layout is rather space-inefficient on most Unix file systems. The entries are usually between 400 and
1400 bytes long, but file systems normally allocate a minimum of 4K for every nonempty disk file. The designers accepted
this cost for the same reason they chose a packed binary format, to cut the startup latency of terminfo-using programsto a
minimum. Disk capacity for constant price has exploded over athousandfold since, tending to vindicate that decision.



The contrast with the formats used by the Microsoft Windows registry filesisinstructive. Registries are property databases
used by both Windows itself and applications. Each registry livesin one big file. Registries contain a mix of text and binary
data that requires specialized editing tools. The one-big-file approach leads, among other things, to the notorious ‘ registry
creep’ phenomenon; average access time rises without bound as new entries are added. Because there is no standard AP
for editing the registry provided by the system, applications use ad-hoc code to edit it themselves, making it notoriously
subject to corruption that can lock up the entire system.

Using the Unix file system as a database is a tactic other applications with simple database requirements might do well to
emulate. Good reasons not to do it are more likely to have to do with the database keys not naturally looking like filenames
than they are with any performance problems. In any case, it's the sort of good fast hack that can be very useful in

prototyping.
Case Study: Freeciv Data Files

Freeciv is an open-source strategy game inspired by Sid Meier's classic Civilization I1. In it, each player begins with a
wandering band of neolithic nomads and builds a civilization. Player civilizations may explore and colonize the world, fight
wars, engage in trade, and research technological advances. Some players may actually be artificial intelligences; solitaire
play against these can be challenging. One wins either by conquering the world or by being the first player to reach a
technology level sufficient to get a starship to Alpha Centauri. Sources and documentation are available at the project site.

Figure 6.3. Main window of a Freeciv game.
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Game: Player 'Kocel]' now has Al skill level 'easy’.
Game staded.

In Chapter 7 we'll exhibit the Freeciv strategy game as an example of client-server partitioning, with the server maintaining
shared state and the client concentrating on GUI presentation. But this game has another notable architectural feature; much
of the game's fixed data, rather than being wired into the server code, is expressed in a property registry read in by the game
server at startup time.

The game's registry files are written in atextual data-file format that assembles text strings (with associated text and
numeric properties) into various internal lists of important data (such as nations and unit types) in the game server. The
minilanguage has an include directive, so game data can be broken up into semantic units (different files) that are each
separately editable. This design choice has been carried through to such an extent that it's possible to define new nations
and new unit types simply by creating new declarations in the data files, without touching the server code at al.

The Freeciv server's startup parsing has an interesting feature that creates something of a conflict between two of Unix's
design rules, and is therefore worth closer examination. The server ignores property names it doesn't know how to use. This
makes it possible to declare properties that the server doesn't yet use without breaking the startup parsing. It means that
development of the game data (policy) and the server engine (mechanism) can be cleanly separated. On the other hand, it
also means startup parsing won't catch simple misspellings of attribute names. This quiet failure seemsto violate the Rule
of Repair.

To resolve this conflict, notice that it's the server'sjob to use the registry data, but the task of carefully error-checking that
data could be handed off to another program to be run by human editors each time the registry is modified. One Unix
solution would be a separate auditing program that analyzes either a machine-readabl e specification of the ruleset format or
the source of the server code to determine the set of properties it uses, parses the Freeciv registry to determine the set of

properties it provides, and prepares a difference report.[%

The aggregate of all Freeciv datafilesis functionally similar to a Windows registry, and even uses a syntax resembling the
textual portions of registries. But the creep and corruption problems we noted with the Windows registry don't crop up here
because no program (either within or outside the Freeciv suite) writes to these files. It's aread-only registry edited only by
the game's maintainers.

The performance impact of data-file parsing is minimized because for each file the operation is performed only once, at
either client or server startup time.

9 Regression testing is a method for detecting bugs introduced as software is modified. It consists of periodically
checking the output of the changing software for some fixed test input against a snapshot of output captured at an earlier
stage of the process and known (or assumed) to be correct.

(%11 Actually, TERMis set by the system at login time. For actual terminals on serial lines, the mapping from tty linesto
TERMvaluesis set from a system configuration file at boot time; the details vary among Unixes. Terminal emulators like
xterm(1) set this variable themselves.

(%2 The ur-ancestor of such validator programs under Unix was lint, a validator for C code separate from the C compiler.
Though GCC has absorbed its functions, old Unix hands are still apt to refer to the process of running a validator as
‘linting’, and the name survivesin utilities such as xmilint.
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Designing for Transparency and Discoverability

To design for transparency and discoverability, you need to apply every tactic for keeping your code
simple, and also concentrate on the ways in which your code is a communication to other human
beings. Thefirst questionsto ask, after “Will this design work?’ are “Will it be readable to other
people? Isit elegant?” We hope it is clear by now that these questions are not fluff and that elegance
isnot aluxury. These qualities in the human reaction to software are essential for reducing its
bugginess and increasing its long-term maintainability.

The Zen of Transparency

One pattern that emerges from the examples we've examined so far in this chapter isthis: If you want
transparent code, the most effective route is ssimply not to layer too much abstraction over what you
are manipulating with the code.

In Chapter 4's section on the value of detachment, our advice was to abstract and simplify and
generalize, to try and detach from the particular, accidental conditions under which a design problem
was posed. The advice to abstract does not actually contradict the advice against excessive
abstractions we're developing here, because there is a difference between getting free of assumptions
and forgetting the problem you're trying to solve. Thisis part of what we were driving at when we
developed the idea that glue layers need to be kept thin.

One of the main lessons of Zen isthat we ordinarily see the world through a haze of preconceptions
and fixed ideas that proceed from our desires. To achieve enlightenment, we must follow the Zen
teaching not merely to let go of desire and attachment, but to experience reality exactly asit is—
without the preconceptions and the fixed ideas getting in the way.

Thisis excellent pragmatic advice for software designers. It's part of what'simplicit in the classic
Unix advice to be minimalist. Software designers are clever people who form ideas (abstractions)
about the application domains they deal with. They organize the software they write around those
ideas. Then, when debugging, they often find they have great trouble seeing through those ideas to
what is actually going on.

Any Zen master would recognize this problem instantly, yell “Three pounds of flax!”, and probably

clout the student a good onel®¥ Consci ously designing for transparency is a slightly less mystical
way of addressing it.

In Chapter 4 we criticized object-oriented programming in terms likely to prove a bit shocking to

programmers who were raised on the 1990s gospel of OO. Object-oriented design doesn't have to be
over-complicated design, but we've observed that too often it is. Too many OO designs are spaghetti-



like tangles of is-a and has-a relationships, or feature thick layers of glue in which many of the
objects seem to exist simply to hold placesin a steep-sided pyramid of abstractions. Such designs are
the opposite of transparent; they are (notoriously) opague and difficult to debug.

Aswe've previoudly noted, Unix programmers are the original zeal ots about modularity, but tend to
go about it in aquieter way. Keeping glue layersthinis part of it; more generaly, our tradition
teaches us to build lower, hugging the ground with algorithms and structures that are designed to be
simple and transparent.

Aswith Zen art, the smplicity of good Unix code depends on exacting self-discipline and a high
level of craft, neither of which are necessarily apparent on casual inspection. Transparency is hard
work, but worth the effort for more than merely artistic reasons. Unlike Zen art, software requires
debugging — and usually needs continuing maintenance, forward-porting, and adaptation throughout
its lifetime. Transparency is therefore more than an esthetic triumph; it isavictory that will be
reflected in lower costs throughout the software's life cycle.

Coding for Transparency and Discoverability

Transparency and discoverability, like modularity, are primarily properties of designs, not code. It is
not sufficient to get right the low-level elements of style, such asindenting code in aclear and
consistent way or having good variable-naming conventions. These qualities have much more to do
with code properties that are less obvious to inspection. Here are afew to think about:

. What is the maximum static depth of your procedure-call hierarchy? That is, leaving out
recursions, how many levels of call might a human have to model mentally to understand the
operation of the code? Hint: If it's more than four, beware.

. Doesthe code have invariant properties[6—4] that are both strong and visible? Invariant
properties help human beings reason about code and detect problem cases.

. Arethefunction callsin your APIsindividually orthogonal, or do they have too many magic
flags and mode bits that have a single call doing multiple tasks? Avoiding mode flags entirely
can lead to a cluttered APl with too many nigh-identical functions, but the obverse error (lots
of easily-forgotten and confusable mode flags) is even more common.

. Arethere ahandful of prominent data structures or a single global scoreboard that captures the
high-level state of the system? Is this state easy to visualize and inspect, or isit diffused
among many individual global variables or objects that are hard to find?

. Isthere aclean, one-to-one mapping between data structures or classesin your program and
the entitiesin the world that they represent?

. Isit easy to find the portion of the code responsible for any given function? How much
attention have you paid to the readability not just of individual functions and modules but of
the whole codebase?

. Doesthe code proliferate special cases or avoid them? Every specia case could interact with
every other special case; all those potentia collisions are bugs waiting to happen. But even
more importantly, specia cases make the code harder to understand.

. How many magic numbers (unexplained constants) does the code have init? Isit easy to



discover the implementation's limits (such as critical buffer sizes) by inspection?

It's best for code to be simple. But if it answers these sorts of questions well, it can be very complex
without putting an impossible cognitive burden on a human maintainer.

The reader might find it instructive to compare these with our checklist questions about modularity in
Chapter 4.

Transparency and Avoiding Overprotectiveness

Close kin to the programmer tendency to build overelaborate castles of abstractionsis atendency to
overprotect others from the low-level details. Whileit's not bad practice to hide those details in the
program’'s normal mode of operation (fetchmail's - v switch is off by default), they should be
discoverable. There's an important difference between hiding them and making them inaccessible.

Programs that cannot reveal what they are doing make troubleshooting far more difficult. Thus,
experienced Unix users actually take the presence of debugging and instrumentation switches as a
good sign, and their absence as possibly a bad one. Absence suggests an inexperienced or careless
devel oper; presence suggests one with enough wisdom to follow the Rule of Transparency.

The temptation to overprotect is especially strong in GUI applications targeted for end users, like
mail readers. One reason Unix developers have been cool toward GUI interfacesisthat, in their
designers’ haste to make them ‘user-friendly’ each one often becomes frustratingly opague to anyone
who hasto solve user problems — or, indeed, interact with it anywhere outside the narrow range
predicted by the user-interface designer.

Worse, programs that are opaque about what they are doing tend to have alot of assumptions baked
into them, and to be frustrating or brittle or both in any use case not anticipated by the designer. Tools
that look glossy but shatter under stress are not good long-term value.

Unix tradition pushes for programs that are flexible for a broader range of uses and troubleshooting
situations, including the ability to present as much state and activity information to the user asthe
user indicates heiswilling to handle. Thisis good for troubleshooting; it is also good for growing
smarter, more self-reliant users.

Transparency and Editable Representations

Another theme that emerges from these examplesis the value of programs that flip a problem out of a
domain in which transparency is hard into one in which it is easy. Audacity, sng(1) and the tic(1)/
infocmp(1) pair all have this property. The objects they manipulate are not readily conformable to the
hand and eye; audio files are not visual objects, and although images expressed in PNG format are
visual, the complexities of PNG annotation chunks are not. All three applications turn manipulation
of their binary file formats into a problem to which human beings can more readily apply intuition
and competences gained from everyday experience.



A rule al these examples follow is that they degrade the representation as little as possible — in fact,
they trandate it reversibly and losslessly. This property is very important, and worth implementing
even if there is no obvious application demand for that kind of 100% fidelity. It gives potential users
confidence that they can experiment without degrading their data.

All the advantages of textual data-file formats that we discussed in Chapter 5 also apply to the textual

formats that sng(1), infocmp(1) and their kin generate. One important application for sng(1) is robotic
generation of PNG image annotations by scripts — because sng(1) exists, such scripts are easier to
write.

Whenever you face a design problem that involves editing some kind of complex binary object, the
Unix tradition encourages asking first off whether you can write atool analogous to sng(1) or thetic
(1)/infocmp(1) pair that can do alossless mapping to an editable textual format and back. Thereis no
established term for programs of this kind, but we'll call them textualizers.

If the binary object is dynamically generated or very large, then it may not be practical or possible to
capture all the state with atextualizer. In that case, the equivalent task isto write a browser. The
paradigm example is fsdb(1), the file-system debugger supported under various Unixes; thereisa
Linux equivalent called debugfs(1). The psgl(1) used to browse PostgreSQL databases, and the
smbclient(1) program that can be used to query Windows file shares on a SAMBA -equipped Linux
machine, are two more. All five are ssimple CLI programs that could be driven by scripts and test
harnesses.

Writing atextualizer or browser is avaluable exercise for at |east four reasons:

« You gain an excellent learning experience. There may be other ways that are as good to learn
about the structure of the object, but none that are obviously better.

« You gain the ability to dump the contents of the structure for inspection and debugging.
Because such atool makes dumping easy, you'll do it more. You'll get more information,
probably |eading to more insight.

. You gain the ability to easily generate test loads and unusual cases. This means you are more
likely to probe the odd corners of the object's state space — and to break the associated
software, so you can fix it before your users break it.

« You gain code you may be able to reuse. If you're careful about how you write the browser/
textualizer and keep the CLI interpreter properly separated from the marshaling/unmarshaling
library, you may find you have code that can be reused for your actual application.

After you've done this, you may well discover that it's possible to apply the “ separated engine and
interface” pattern (see Chapter 11) using your textualizer/debugger as the engine. All the usual
benefits of this pattern will apply.



It is desirable, although often difficult, for atextualizer to be able to read and
write even a damaged binary object. For one thing, it lets you generate damaged
test cases to stress-test software; for another, it can make emergency repairs a
wholelot easier. It may be hard to handle cases in which the structure of the
object is messed up, but at least you should handle cases in which the content of
the structure is nonsense, e.g., by showing nonsense values in hex and converting
the hex back to the values.

-- Henry Spencer

Transparency, Fault Diagnosis, and Fault Recovery

Y et another benefit of transparency, related to ease of debugging, isthat transparent systems are
easier to perform recovery actions on after a bug bites — and, often, more resistant to damage from
bugsin thefirst place.

In comparing the terminfo database with Windows registries we noted that registries are notoriously
subject to being corrupted by buggy application code. This can make the entire system unusable.
Even if it doesn't, recovery can be difficult if the corruption confuses the specialized registry-editing
tools.

Our Unix case studies illustrate ways that designing for transparency can prevent this class of
problem. Because the terminfo database is not one big file, botching one terminfo entry does not
make the whole terminfo data set unusable. Fully textual one-big-file formats like termcap are usually
parsed with methods which (unlike block reads of binary structure dumps) can recover from single-
point errors. Syntax errorsin an SNG file can be corrected by hand without requiring specialized
editors that might refuse to load a damaged PNG image.

Going back to the kmail case study, that program makes fault diagnosis easier because it obeys the
Rule of Repair: SMTP failures are noisy, usefully so. You don't have to decode a layer of obfuscatory
messages generated by kmail itself to see what the interaction with the SMTP server looks like. All
you have to do islook in the right place, because kmail is being transparent and not throwing away
information about the error state. (It helps that SMTP itself is textual and includes human-readable
status messages in its transactions.)

Discoverahility tools like textualizers and browsers also make fault diagnosis easier. We've already
touched on one reason: they make inspecting the state of the system easier. But there is another effect
at work as well; textualized versions of data tend to have useful redundancies (such as using
whitespace for visual separation as well as explicit delimiters for parsing). These are present to make
them easier to read for humans, but aso have the effect of making them more resistant to being
irreparably trashed by point failures. A corrupted chunk in a PNG file is seldom recoverable, but the
human capacity for pattern recognition and reasoning from context might be able to repair the
equivalent SNG form.

Over and over again, the Rule of Robustnessis clear. Simplicity plus transparency lowers costs,
reduces everybody's stress, and frees people to concentrate on new problems rather than cleaning up



after old mistakes.

[%3] See the koan called Tozan's Three Pounds in the Gateless Gate [Mumon].

[ Aninvariant isa property of a software design that is preserved by every operation in it. For
example, in most databases it is an invariant that no two records may have the samekey. InaC
program that correctly manipulates strings, every string buffer must contain aterminating NUL byte
on exit from each string function. In an inventory system, no parts count can hold a number less than
zero.
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Designing for Maintainability

Software is maintainabl e to the extent that people who are not its author can successfully understand
and modify it. Maintainability demands more than code that works; it demands code that follows the
Rule of Clarity and communicates successfully to human beings as well as the computer.

Unix programmers have alot of implicit knowledge available to them about what makes for
maintainable code, because Unix hosts source code that goes back decades. For reasons we'll discuss
in Chapter 17, Unix programmers learn a tendency to scrap and rebuild rather than patching grubby

code (see Rob Pike's meditation on this subject in Chapter 1). Thus, any sources that have survived

more than a decade of evolutionary pressure have been selected for maintainability. These old,
successful, well-established projects with maintainable code are the community's models for practice.

A question Unix programmers — and especially Unix programmers in the open-source world —
learn to ask about tools they are evaluating for useis: “Isthis code live, dormant, or dead?’ Live code
has an active developer community attached to it. Dormant code has often become dormant because
the pain of maintaining it exceeded its utility to its originators. Dead code has been dormant for so
long that it would be easier to reimplement an equivalent from scratch. If you want your codeto live,
investing effort to make it maintainable (and therefore attractive to future maintainers) will be one of
the most effective ways you can spend your time.

Code that is designed to be both transparent and discoverable has gone along way toward being
maintainable. But there are other practices we can observe in the model projectsin this chapter that
are worth emulating.

One very important practice is an application of the Rule of Clarity: choosing simple algorithms. In
Chapter 1 we quoted Ken Thompson: “When in doubt, use brute force”. Thompson understood the
full cost of complicated algorithms — not just that they're more bug-prone when initially
implemented, but that they're harder for maintainers down the line to understand.

Another important practice is the inclusion of hacker's guides. It has always been highly approved
behavior for source code distributions to include guide documents informally describing the key data
structures and algorithms in the code. In fact, Unix programmers have often been better about
producing hacker's guides than they are about writing end-user documentation.

The open-source community has seized on and elaborated this custom. Besides being advice to future
maintainers, hacker's guides for open-source projects are also designed to make it easy for casua
contributors to add features or fix bugs. The Design Notes file shipped with fetchmail is
representative. The Linux kernel sourcesinclude literally dozens of these.



In Chapter 19 we'll describe conventions that Unix developers have evolved for making source code

distributions easy to examine and easy to build running code from. These practices, too, promote
maintainability.
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If we believe in data structures, we must believe in independent (hence simultaneous) processing. For
why else would we collect items within a structure? Why do we tolerate languages that give us the
one without the other?

-- Alan Perlis Epigrams in Programming, in ACM SIGPLAN (Vol 17 #9, 1982)

The most characteristic program-modularization technique of Unix is splitting large programs into
multiple cooperating processes. This has usually been called ‘multiprocessing’ in the Unix world, but
in this book we revive the older term * multiprogramming’ to avoid confusion with multiprocessor
hardware implementations.

Multiprogramming is a particularly murky area of design, one in which there are few guidelines to
good practice. Many programmers with excellent judgment about how to break up code into
subroutines nevertheless wind up writing whole applications as monster single-process monoliths that
founder on their own internal complexity.

The Unix style of design applies the do-one-thing-well approach at the level of cooperating programs
as well as cooperating routines within a program, emphasizing small programs connected by well-
defined interprocess communication or by shared files. Accordingly, the Unix operating system



encourages us to break our programsinto simpler subprocesses, and to concentrate on the interfaces
between these subprocesses. It doesthisin at least three fundamental ways:

. by making process-spawning cheap;

. by providing methods (shellouts, I/O redirection, pipes, message-passing, and sockets) that
make it relatively easy for processes to communicate;

by encouraging the use of simple, transparent, textual data formats that can be passed through
pipes and sockets.

Inexpensive process-spawning and easy process control are critical enablers for the Unix style of
programming. On an operating system such as VAX VMS, where starting processes is expensive and
slow and requires special privileges, one must build monster monoliths because one has no choice.
Fortunately the trend in the Unix family has been toward lower fork(2) overhead rather than higher.
Linux, in particular, isfamoudly efficient this way, with a process-spawn faster than thread-spawning

on many other operating systems.[%

Historically, many Unix programmers have been encouraged to think in terms of multiple
cooperating processes by experience with shell programming. Shell makes it relatively easy to set up
groups of multiple processes connected by pipes, running either in background or foreground or a
mix of the two.

In the remainder of this chapter, we'll ook at the implications of cheap process-spawning and discuss
how and when to apply pipes, sockets, and other interprocess communication (1PC) methods to
partition your design into cooperating processes. (In the next chapter, we'll apply the same separation-
of-functions philosophy to interface design.)

While the benefit of breaking programs up into cooperating processes is a reduction in global
complexity, the cost is that we have to pay more attention to the design of the protocols which are
used to pass information and commands between processes. (In software systems of all kinds, bugs
collect at interfaces.)

In Chapter 5 we looked at the lower level of this design problem — how to lay out application

protocols that are transparent, flexible and extensible. But there is a second, higher level to the
problem which we blithely ignored. That is the problem of designing state machines for each side of
the communication.

It is not hard to apply good style to the syntax of application protocols, given models like SMTP or
BEEP or XML-RPC. Thereal challengeis not protocol syntax but protocol logic—designing a
protocol that is both sufficiently expressive and deadlock-free. Almost as importantly, the protocol
has to be seen to be expressive and deadl ock-free; human beings attempting to model the behavior of
the communicating programs in their heads and verify its correctness must be able to do so.



In our discussion, therefore, we will focus on the kinds of protocol logic one naturally uses with each
kind of interprocess communication.

%3] See, for example, the results quoted in Improving Context Swvitching Performance of Idle Tasks
under Linux [Appleton].
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Separating Complexity Control from Performance Tuning

First, though, we need to dispose of afew red herrings. Our discussion is not going to be about using
concurrency to improve performance. Putting that concern before developing a clean architecture that
minimizes global complexity is premature optimization, the root of all evil (see Chapter 12 for further

discussion).

A closely related red herring is threads (that is, multiple concurrent processes sharing the same
memory-address space). Threading is a performance hack. To avoid along diversion here, welll
examine threads in more detail at the end of this chapter; the summary is that they do not reduce
global complexity but rather increase it, and should therefore be avoided save under dire necessity.

Respecting the Rule of Modularity, on the other hand, is not ared herring; doing so can make your
programs — and your life — simpler. All the reasons for process partitioning are continuous with the
reasons for module partitioning that we developed in Chapter 4.

Another important reason for breaking up programs into cooperating processes is for better security.
Under Unix, programs that must be run by ordinary users, but must have write access to security-

critical system resources, get that access through afeature called the setuid bit.[%] Executable files
are the smallest unit of code that can hold a setuid bit; thus, every line of code in a setuid executable
must be trusted. (Well-written setuid programs, however, take all necessary privileged actions first
and then drop their privileges back to user level for the remainder of their existence.)

Usually a setuid program only needs its privileges for one or a small handful of operations. It is often
possible to break up such a program into cooperating processes, a smaller one that needs setuid and a
larger one that does not. When we can do this, only the code in the smaller program has to be trusted.
It isin significant part because this kind of partitioning and delegation is possible that Unix has a

better security track record[®]] than its competitors.

(%9 A setuid program runs not with the privileges of the user calling it, but with the privileges of the
owner of the executable. This feature can be used to give restricted, program-controlled access to
things like the password file that nonadministrators should not be allowed to modify directly.

(%9 That IS, a better record measured in security breaches per total machine hours of Internet exposure.
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Taxonomy of Unix IPC Methods

Asin single-process program architectures, the simplest organization is the best. The remainder of
this chapter will present |PC techniques roughly in order of escalating complexity of programming
them. Before using a later, more complex technique, you should prove by demonstration — with
prototypes and benchmark results — that no earlier and ssimpler technique will do. Often you will
surprise yourself.

Handing off Tasks to Specialist Programs

In the simplest form of interprogram cooperation enabled by inexpensive process spawning, a
program runs another to accomplish a specialized task. Because the called program is often specified
as aUnix shell command through the system(3) call, thisis often called shelling out to the called
program. The called program inherits the user's keyboard and display and runs to completion. When

it exits, the calling program resumes control of the keyboard and display and resumes execution.[®8]
Because the calling program does not communicate with the called program during the callee's
execution, protocol design is not an issuein thiskind of cooperation, except in the trivial sense that
the caller may pass command-line arguments to the callee to change its behavior.

The classic Unix case of shelling out is calling an editor from within amail or news program. In the
Unix tradition one does not bundle purpose-built editors into programs that require general text-
edited input. Instead, one allows the user to specify an editor of hisor her choice to be called when
editing needs to be done.

The specialist program usually communicates with its parent through the file system, by reading or
modifying file(s) with specified location(s); thisis how editor or mailer shellouts work.

In acommon variant of this pattern, the specialist program may accept input on its standard input,
and be called with the C library entry point popen(..., "w') or aspart of ashellscript. Or it
may send output to its standard output, and be called with popen(..., "r") oraspartof a
shellscript. (If it both reads from standard input and writes to standard output, it does so in a batch
mode, completing all reads before doing any writes.) Thiskind of child processis not usually referred
to as a shellout; there is no standard jargon for it, but it might well be called a ‘ bolt-on’.

They key point about all these casesis that the specialist programs don't handshake with the parent
while they are running. They have an associated protocol only in the trivial sense that whichever
program (master or slave) is accepting input from the other has to be able to parse it.

Case Study: The mutt Mail User Agent



The mutt mail user agent is the modern representative of the most important design tradition in Unix
email programs. It has a simple screen-oriented interface with single-keystroke commands for
browsing and reading mail.

When you use mutt as amail composer (either by calling it with an address as a command-line
argument or by using one of the reply commands), it examines the process environment variable
EDI TOR, and then generates atemporary file name. The value of the EDI TOR variableiscalled asa

command with the tempfile name as an argument.[@] When that command terminates, mutt resumes
on the assumption that the temporary file contains the desired mail text.

Almost al Unix mail- and netnews-composition programs observe the same convention. Because
they do, composer implementers don't need to write a hundred inevitably diverging editors, and users
don't need to learn a hundred divergent interfaces. Instead, users can carry their chosen editors with
them.

An important variant of this strategy shells out to a small proxy program that passes the specialist job
to an already-running instance of a big program, like an editor or a\Web browser. Thus, developers
who normally have an instance of emacs running on their X display can set EDI TOR=emacsclient,
and have a buffer pop open in their emacs when they request editing in mutt. The point of thisis not
really to save memory or other resources, it's to enable the user to unify al editing in a single emacs
process (so that, for example, cut and paste among buffers can carry along internal emacs state
information like font highlighting).

Pipes, Redirection, and Filters

After Ken Thompson and Dennis Ritchie, the single most important formative figure of early Unix
was probably Doug Mcllroy. His invention of the pipe construct reverberated through the design of
Unix, encouraging its nascent do-one-thing-well philosophy and inspiring most of the later forms of
IPC in the Unix design (in particular, the socket abstraction used for networking).

Pipes depend on the convention that every program hasinitialy availableto it (at least) two 1/O data
streams: standard input and standard output (numeric file descriptors 0 and 1 respectively). Many
programs can be written as filters, which read sequentially from standard input and write only to
standard output.

Normally these streams are connected to the user's keyboard and display, respectively. But Unix
shells universally support redirection operations which connect these standard input and output
streamsto files. Thus, typing

| s >f oo
sends the output of the directory lister Is(1) to afile named ‘foo’. On the other hand, typing:

we <f oo



causes the word-count utility wec(2) to take its standard input from the file ‘foo’, and deliver a
character/word/line count to standard output.

The pipe operation connects the standard output of one program to the standard input of another. A
chain of programs connected in thisway is called a pipeline. If we write

ls | we

we'll see a character/word/line count for the current directory listing. (In this case, only the line count
isreally likely to be useful.)

One favorite pipeline was “bc | speak” —atalking desk calculator. It knew
number names up to avigintillion.
-- Doug Mcllroy

It's important to note that all the stages in a pipeline run concurrently. Each stage waits for input on
the output of the previous one, but no stage has to exit before the next can run. This property will be
important later on when we look at interactive uses of pipelines, like sending the lengthy output of a
command to more(1).

It's easy to underestimate the power of combining pipes and redirection. As an instructive example,
The Unix Shell Asa 4GL [Schaffer-Wolf] shows that with these facilities as aframework, a handful
of simple utilities can be combined to support creating and manipulating relational databases
expressed as simple textual tables.

The major weakness of pipesisthat they are unidirectional. It's not possible for a pipeline component
to pass control information back up the pipe other than by terminating (in which case the previous
stage will get a SI GPI PE signal on the next write). Accordingly, the protocol for passing dataiis
simply the receiver's input format.

So far, we have discussed anonymous pipes created by the shell. Thereisavariant called a named
pipe which isaspecial kind of file. If two programs open the file, one for reading and the other for
writing, a named pipe acts like a pipe-fitting between them. Named pipes are a bit of a historical
relic; they have been largely displaced from use by named sockets, which we'll discuss below. (For
more on the history of thisrelic, see the discussion of System V IPC below.)

Case Study: Piping to a Pager

Pipelines have many uses. For one example, Unix's process lister ps(1) lists processes to standard
output without caring that along listing might scroll off the top of the user's display too quickly for
the user to seeit. Unix has another program, more(1), which displays its standard input in screen-
sized chunks, prompting for a user keystroke after displaying each screenful.

Thus, if the user types “ps | mor€’, piping the output of ps(1) to the input of more(1), successive



page-sized pieces of the list of processes will be displayed after each keystroke.

The ability to combine programs like this can be extremely useful. But the real win hereis not cute
combinations; it's that because both pipes and more(1) exist, other programs can be simpler. Pipes
mean that programs like Is(1) (and other programs that write to standard out) don't have to grow their
own pagers — and we're saved from aworld of athousand built-in pagers (each, naturally, with its
own divergent look and feel). Code bloat is avoided and global complexity reduced.

Asabonus, if anyone needs to customize pager behavior, it can be done in one place, by changing
one program. Indeed, multiple pagers can exist, and will all be useful with every application that
writes to standard outpui.

In fact, this has actually happened. On modern Unixes, more(1) has been largely replaced by less(1),

which adds the capability to scroll back in the displayed file rather than just forward.[”] Because less
(1) isdecoupled from the programs that use it, it's possible to simply alias ‘more’ to ‘less’ in your
shell, set the environment variable PAGER 0 ‘less (see Chapter 10), and get all the benefits of a
better pager with all properly-written Unix programs.

Case Study: Making Word Lists

A more interesting example is one in which pipelined programs cooperate to do some kind of data
transformation for which, in less flexible environments, one would have to write custom code.

Consider the pipeline
tr -c '[:alnum]" "[\n*]" | sort -iu | grep -v '"~[0-9]*%

The first command transl ates non-al phanumerics on standard input to newlines on standard outpui.
The second sorts lines on standard input and writes the sorted data to standard output, discarding all
but one copy of spans of adjacent identical lines. The third discards all lines consisting solely of
digits. Together, these generate a sorted wordlist to standard output from text on standard input.

Case Study: pic2graph

Shell source code for the program pic2graph(1) ships with the groff suite of text-formatting tools
from the Free Software Foundation. It translates diagrams written in the PIC language to bitmap
images. Example 7.1 shows the pipeline at the heart of this code.

Example 7.1. The pic2graph pipeline.

(echo ".EQ'; echo $egndelim echo ".EN'; echo ".PS";cat;echo ".PE")|
\
groff -e -p $groffpic_opts -Tps >${tnmp}.ps \



&% convert -crop 0x0 $convert opts ${tnp}.ps ${tnp}.${format} \
&% cat ${tnp}.${fornmat}

The pic2graph(1) implementation illustrates how much one pipeline can do purely by calling
preexisting tools. It starts by massaging its input into an appropriate form, continues by feeding it
through groff(1) to produce PostScript, and finishes by converting the PostScript to a bitmap. All
these details are hidden from the user, who ssimply sees PIC source go in one end and a bitmap ready
for inclusion in a Web page come out the other.

Thisis an interesting example because it illustrates how pipes and filtering can adapt programs to
unexpected uses. The program that interprets PIC, pic(1), was originally designed only to be used for
embedding diagrams in typeset documents. Most of the other programs in the toolchain it was part of
are now semiobsolescent. But PIC remains handy for new uses, such as describing diagramsto be
embedded in HTML. It gets arenewed lease on life because tools like pic2graph(1) can bundie
together all the machinery needed to convert the output of pic(1) into a more modern format.

Wel'll examine pic(1) more closely, as a minilanguage design, in Chapter 8.
Case Study: bc(1) and dc(1)

Part of the classic Unix toolkit dating back to Version 7 isapair of calculator programs. The dc(1)
program is a simple calculator that accepts text lines consisting of reverse-Polish notation (RPN) on
standard input and emits cal culated answers to standard output. The bc(1) program accepts a more
elaborate infix syntax resembling conventional algebraic notation; it includes as well the ability to set
and read variables and define functions for elaborate formulas.

While the modern GNU implementation of bc(1) is standalone, the classic version passed commands
to dc(1) over apipe. Inthisdivision of labor, bc(1) does variable substitution and function expansion
and trandlates infix notation into reverse-Polish — but doesn't actually do calculation itself, instead
passing RPN tranglations of input expressions to dc(1) for evaluation.

There are clear advantages to this separation of function. It means that users get to choose their
preferred notation, but the logic for arbitrary-precision numeric calculation (which is moderately
tricky) does not have to be duplicated. Each of the pair of programs can be less complex than one
calculator with a choice of notations would be. The two components can be debugged and mentally
modeled independently of each other.

In Chapter 8 we will reexamine these programs from a dlightly different example, as examples of
domain-specific minilanguages.

Anti-Case Study: Why Isn't fetchmail a Pipeline?

In Unix terms, fetchmail is an uncomfortably large program that bristles with options. Thinking about
the way mail transport works, one might think it would be possible to decompose it into a pipeline.



Suppose for amoment it were broken up into several programs: a couple of fetch programsto get
mail from POP3 and IMAP sites, and alocal SMTP injector. The pipeline could pass Unix mailbox
format. The present elaborate fetchmail configuration could be replaced by a shellscript containing
command lines. One could even insert filtersin the pipeline to block spam.

#!/ bi n/ sh

| map jrandom@ map.ccil.org | spanbl ocker | sntp jrandom
| map j random@ map. net axs.com | sntp jrandom

# pop ed@op.tens.com| sntp jrandom

Thiswould be very elegant and Unixy. Unfortunately, it can't work. We touched on the reason
earlier; pipelines are unidirectional.

One of the things the fetcher program (imap or pop) would have to do is decide whether to send a
delete request for each message it fetches. In fetchmail's present organization, it can delay sending
that request to the POP or IMAP server until it knows that the local SMTP listener has accepted
responsibility for the message. The pipelined, small-component version would lose that property.

Consider, for example, what would happen if the smtp injector fails because the SMTP listener
reports a disk-full condition. If the fetcher has already deleted the mail, we lose. This means the
fetcher cannot delete mail until it is notified to do so by the smtp injector. Thisin turn raises a host of
questions. How would they communicate? What message, exactly, would the injector pass back? The
global complexity of the resulting system, and its vulnerability to subtle bugs, would almost certainly
be higher than that of a monolithic program.

Pipelines are a marvelous tool, but not a universal one.

Wrappers

The opposite of ashellout isawrapper. A wrapper creates a new interface for a called program, or
specializesit. Often, wrappers are used to hide the details of elaborate shell pipelines. We'll discuss
interface wrappersin Chapter 11. Most specialization wrappers are quite simple, but nevertheless

very useful.

As with shellouts, there is no associated protocol because the programs do not communicate during
the execution of the callee; but the wrapper usually exists to specify arguments that modify the
callee's behavior.

Case Study: Backup Scripts

Specialization wrappers are a classic use of the Unix shell and other scripting languages. One kind of
specialization wrapper that is both common and representative is a backup script. It may be a one-
liner as ssmple asthis:



tar -czvf /dev/st0 "$@

Thisisawrapper for thetar(1) tape archiver utility which ssimply supplies one fixed argument (the

tape device/ dev/ st 0) and passesto tar all the other arguments supplied by the user (“$@).[4

Security Wrappers and Bernstein Chaining

One common use of wrapper scriptsis as security wrappers. A security script may call a gatekeeper
program to check some sort of credential, then conditionally execute another based on the status
value returned by the gatekeeper.

Bernstein chaining is a specialized security-wrapper technique first invented by Daniel J. Bernstein,
who has employed it in a number of his packages. (A similar pattern appears in commands like nohup
(1) and su(1), but the conditionality is absent.) Conceptually, a Bernstein chain is like a pipeline, but
each successive stage replaces the previous one rather than running concurrently with it.

The usual application isto confine security-privileged applications to some sort of gatekeeper
program, which can then hand state to aless privileged one. The technique pastes several programs
together using execs, or possibly a combination of forks and execs. The programs are all named on
one command line. Each program performs some function and (if successful) runs exec(2) on the rest
of itscommand line.

Bernstein's rblsmtpd package is a prototypical example. It servesto look up a host in the antispam
DNS zone of the Mail Abuse Prevention System. It does this by doing a DNS query on the |P address
passed into it in the TCPREMOTEI P environment variable. If the query is successful, then rblsmtpd
runsits own SMTP that discards the mail. Otherwise the remaining command-line arguments are
presumed to constitute a mail transport agent that knows the SMTP protocol, and are handed to exec
(2) to be run.

Another example can be found in Bernstein's gmail package. It contains a program called
condredirect. Thefirst parameter is an email address, and the remainder a gatekeeper program and
arguments. condredirect forks and execs the gatekeeper with its arguments. If the gatekeeper exits
successfully, condredirect forwards the email pending on stdin to the specified email address. In this
case, opposite to that of rblsmtpd, the security decision is made by the child; this case is a bit more
like aclassical shellout.

A more elaborate example is the gmail POP3 server. It consists of three programs, gmail-popup,
checkpassword, and gmail-pop3d. Checkpassword comes from a separate package cleverly called
checkpassword, and unsurprisingly it checks the password. The POP3 protocol has an authentication
phase and mailbox phase; once you enter the mailbox phase you cannot go back to the authentication
phase. Thisis aperfect application for Bernstein chaining.

The first parameter of gmail-popup is the hostname to use in the POP3 prompts. Therest of its
parameters are forked and passed to exec(2), after the POP3 username and password have been



fetched. If the program returns failure, the password must be wrong, so gmail-popup reports that and
walits for a different password. Otherwise, the program is presumed to have finished the POP3
conversation, so gmail-popup exits.

The program named on gmail-popup's command line is expected to read three null-terminated strings

from file descriptor 3174 These are the username, password, and response to a cryptographic
challenge, if any. Thistime it's checkpassword which accepts as parameters the name of gmail-pop3d
and its parameters. The checkpassword program exits with failure if the password does not match;
otherwise it changes to the user's uid, gid, and home directory, and executes the rest of its command
line on behalf of that user.

Bernstein chaining is useful for situations in which the application needs setuid or setgid privileges to
initialize a connection, or to acquire some credential, and then drop those privileges so that following
code does not have to be trusted. Following the exec, the child program cannot set its real user 1D
back to root. It's also more flexible than a single process, because you can modify the behavior of the
system by inserting another program into the chain.

For example, rblsmtpd (mentioned above) can be inserted into a Bernstein chain, in between
tcpserver (from the ucspi-tcp package) and the real SMTP server, typically gmail-smtpd. However, it
works with inetd(8) and sendmail -bs as well.

Slave Processes

Occasionally, child programs both accept data from and return data to their callers through pipes
connected to standard input and output, interactively. Unlike ssmple shellouts and what we have
called ‘bolt-ons’ above, both master and slave processes need to have internal state machines to
handle a protocol between them without deadlocking or racing. Thisis adrastically more complex
and more difficult-to-debug organization than a simple shellout.

Unix's popen(3) call can set up either an input pipe or an output pipe for a shellout, but not both for a
slave process — this seems intended to encourage ssimpler programming. And, in fact, interactive
master-slave communication is tricky enough that it is normally only used when either (@) the implied
protocol is utterly trivial, or (b) the slave process has been designed to speak an application protocol
along the lines we discussed in Chapter 5. We'll return to thisissue, and ways to cope with it, in

Chapter 8.

When writing a master/dave pair, it is good practice for the master to support acommand-line switch
or environment variable that allows callers to set their own slave command. Among other things, this
Is useful for debugging; you will often find it handy during development to invoke the real slave
process from within a harness that monitors and logs transactions between slave and master.

If you find that master/slave interactions in your program are becoming nontrivial, it may betimeto
think about going the rest of the way to a more peer-to-peer organization, using techniques like
sockets or shared memory.



Case Study: scp and ssh

One common case in which the implied protocol realy istrivial is progress meters. The scp(1) secure-
copy command calls ssh(1) as a dlave process, intercepting enough information from ssh's standard

output to reformat the reports as an ASCII animation of a progress bar[=3]

Peer-to-Peer Inter-Process Communication

All the communication methods we've discussed so far have a sort of implicit hierarchy about them,
with one program effectively controlling or driving another and zero or limited feedback passing in
the opposite direction. In communications and networking we frequently need channels that are peer-
to-peer, usually (but not necessarily) with data flowing freely in both directions. We'll survey peer-to-
peer communications methods under Unix here, and develop some case studiesin later chapters.

Tempfiles

The use of tempfiles as communications drops between cooperating programsis the oldest I1PC
technique there is. Despite drawbacks, it's still useful in shellscripts, and in one-off programs where a
more elaborate and coordinated method of communication would be overkill.

The most obvious problem with using tempfiles as an |PC technique is that it tends to |eave garbage
lying around if processing is interrupted before the tempfile can be deleted. A less obviousrisk is that
of collisions between multiple instances of a program using the same name for atempfile. Thisis
why it is conventional for shellscripts that make tempfiles to include $3$ in their names; this shell
variable expands to the process-1D of the enclosing shell and effectively guarantees that the filename
will be unique (the same trick is supported in Perl).

Finally, if an attacker knows the location to which atempfile will be written, it can overwrite on that
name and possibly either read the producer's data or spoof the consumer process by inserting

modified or spurious datainto thefile[” Thisis a security risk. If the processes involved have root
privileges, thisisavery seriousrisk. It can be mitigated by setting the permissions on the tempfile
directory carefully, but such arrangements are notoriously likely to spring leaks.

All these problems aside, tempfiles still have a niche because they're easy to set up, they're flexible,
and they're less vulnerable to deadlocks or race conditions than more elaborate methods. And
sometimes, nothing else will do. The calling conventions of your child process may require that it be
handed afile to operate on. Our first example of a shellout to an editor demonstrates this perfectly.

Signals

The ssimplest and crudest way for two processes on the same machine to communicate with each
other isfor one to send the other asignal. Unix signals are aform of soft interrupt; each one hasa
default effect on the receiving process (usually to kill it). A process can declare asignal handler that
overrides the default action for the signal; the handler is afunction that is executed asynchronously



when the signal is received.

Signals were originally designed into Unix as away for the operating system to notify programs of
certain errors and critical events, not as an |PC facility. The SI GHUP signal, for example, is sent to
every program started from a given terminal session when that session isterminated. The SI G NT
signal is sent to whatever processis currently attached to the keyboard when the user enters the
currently-defined interrupt character (often control-C). Nevertheless, signals can be useful for some

| PC situations (and the POSI X -standard signal set includes two signals, SI GUSR1 and SI GUSR2,
intended for this use). They are often employed as a control channel for daemons (programs that run
constantly, invisibly, in background), away for an operator or another program to tell a daemon that
It needs to either reinitialize itself, wake up to do work, or write internal -state/debugging information
to aknown location.

| insisted SI GUSR1 and SI GUSR2 be invented for BSD. People were grabbing
system signals to mean what they needed them to mean for |PC, so that (for
example) some programs that segfaulted would not coredump because

SI GSEGV had been hijacked.

Thisisageneral principle — people will want to hijack any tools you build, so
you have to design them to either be un-hijackable or to be hijacked cleanly.
Those are your only choices. Except, of course, for being ignored—a highly
reliable way to remain unsullied, but less satisfying than might at first appear.

-- Ken Arnold

A technique often used with signal |PC is the so-called pidfile. Programs that will need to be signaled
will write asmall file to aknown location (oftenin/ var / r un or the invoking user's home
directory) containing their process ID or PID. Other programs can read that file to discover that PID.
The pidfile may also function as an implicit lock file in cases where no more than one instance of the
daemon should be running simultaneously.

There are actually two different flavors of signals. In the older implementations (notably V7, System

[11, and early System V), the handler for agiven signal is reset to the default for that signal whenever

the handler fires. The result of sending two of the same signal in quick succession is therefore usually
to kill the process, no matter what handler was set.

The BSD 4.x versions of Unix changed to “reliable” signals, which do not reset unless the user
explicitly requestsit. They also introduced primitives to block or temporarily suspend processing of a
given set of signals. Modern Unixes support both styles. Y ou should use the BSD-style nonresetting
entry points for new code, but program defensively in case your code is ever ported to an
implementation that does not support them.

Receiving N signals does not necessarily invoke the signal handler N times. Under the older System
V signal model, two or more signals spaced very closely together (that is, within a single timeslice of

the target process) can result in various race conditiond 3 or anomalies. Depending on what variant
of signals semantics the system supports, the second and later instances may be ignored, may cause



an unexpected processkill, or may have their delivery delayed until earlier instances have been
processed (on modern Unixesthe last is most likely).

The modern signals API is portable across all recent Unix versions, but not to Windows or classic
(pre-OS X) MacOS.

System Daemons and Conventional Signals

Many well-known system daemons accept SI GHUP (originally the signal sent to programs on a serial-
line drop, such as was produced by hanging up a modem connection) as asignal to reinitialize (that

IS, reload their configuration files); examples include Apache and the Linux implementations of
bootpd(8), gated(8), inetd(8), mountd(8), named(8), nfsd(8), and ypbind(8). In afew cases, SI GHUP
Is accepted initsoriginal sense of a session-shutdown signal (notably in Linux pppd(8)), but that role
nowadays generally goesto SI GTERM

SI GTERM(‘terminate’) is often accepted as a graceful-shutdown signal (thisis as distinct from
SI &KI LL, which does an immediate process kill and cannot be blocked or handled). SI GTERM
actions often involve cleaning up tempfiles, flushing final updates out to databases, and the like.

When writing daemons, follow the Rule of Least Surprise: use these conventions, and read the
manual pagesto look for existing models.

Case Study: fetchmail's Use of Signals

The fetchmail utility isnormally set up to run as a daemon in background, periodically collecting
mail from all remote sites defined in its run-control file and passing the mail to the local SMTP
listener on port 25 without user intervention. fetchmail sleeps for a user-defined interval (defaulting
to 15 minutes) between collection attempts, so as to avoid constantly |oading the network.

When you invoke fetchmail with no arguments, it checks to seeif you have afetchmail daemon
already running (it does this by looking for a pidfile). If no daemon is running, fetchmail starts up
normally using whatever control information has been specified in its run-control file. If adaemon is
running, on the other hand, the new fetchmail instance just signals the old one to wake up and collect
mail immediately; then the new instance terminates. In addition, fetchmail -q sends a termination
signal to any running fetchmail daemon.

Thus, typing fetchmail means, in effect, “poll now and leave a daemon running to poll later; don't
bother me with the detail of whether a daemon was already running or not”. Observe that the detail of
which particular signals are used for wakeup and termination is something the user doesn't have to
know.

Sockets

Sockets were developed in the BSD lineage of Unix as away to encapsul ate access to data networks.
Two programs communicating over a socket typically see a bidirectional byte stream (there are other



socket modes and transmission methods, but they are of only minor importance). The byte streamis
both sequenced (that is, even single bytes will be received in the same order sent) and reliable (socket
users are guaranteed that the underlying network will do error detection and retry to ensure delivery).
Socket descriptors, once obtained, behave essentially like file descriptors.

Sockets differ from read/write in one important case. If the bytes you send arrive,
but the receiving machine failsto ACK, the sending machine's TCP/IP stack will
time out. So getting an error does not necessarily mean that the bytes didn't
arrive; the recelver may be using them. This problem has profound consequences
for the design of reliable protocols, because you have to be able to work properly
when you don't know what was received in the past. Local 1/0O is‘yes/no’.
Socket I/0 is ‘yes/no/maybe’ . And nothing can ensure delivery — the remote
machine might have been destroyed by a comet.

-- Ken Arnold

At the time a socket is created, you specify a protocol family which tells the network layer how the
name of the socket isinterpreted. Sockets are usually thought of in connection with the Internet, asa
way of passing data between programs running on different hosts; thisisthe AF_INET socket family,
in which addresses are interpreted as host-address and service-number pairs. However, the AF_UNIX
(aka AF_LOCAL) protocol family supports the same socket abstraction for communication between
two processes on the same machine (names are interpreted as the locations of special files analogous
to bidirectional named pipes). As an example, client programs and servers using the X windowing
system typically use AF_LOCAL sockets to communicate.

All modern Unixes support BSD-style sockets, and as a matter of design they are usually the right
thing to use for bidirectional IPC no matter where your cooperating processes are located.
Performance pressure may push you to use shared memory or tempfiles or other techniques that make
stronger locality assumptions, but under modern conditionsit is best to assume that your code will
need to be scaled up to distributed operation. More importantly, those locality assumptions may mean
that portions of your system get chummier with each others' internals than ought to be the casein a
good design. The separation of address spaces that sockets enforce is afeature, not a bug.

To use sockets gracefully, in the Unix tradition, start by designing an application protocol for use
between them — a set of requests and responses which expresses the semantics of what your
programs will be communicating about in a succinct way. We've already discussed the some major
Issues in the design of application protocols in Chapter 5.

Sockets are supported in al recent Unixes, under Windows, and under classic MacOS as well.
Case Study: PostgreSQL

PostgreSQL is an open-source database program. Had it been implemented as a monster monolith, it
would be a single program with an interactive interface that manipul ates database files on disk
directly. Interface would be welded together with implementation, and two instances of the program
attempting to manipul ate the same database at the same time would have serious contention and



locking issues.

Instead, the PostgreSQL suite includes a server called postmaster and at least three client
applications. One postmaster server process per machine runs in background and has exclusive
access to the database files. It accepts requests in the SQL query minilanguage through TCP/IP
sockets, and returns answers in atextual format as well. When the user runs a PostgreSQL client, that
client opens a session to postmaster and does SQL transactions with it. The server can handle severa
client sessions at once, and sequences requests so that they don't interfere with each other.

Because the front end and back end are separate, the server doesn't need to know anything except
how to interpret SQL requests from a client and send SQL reports back to it. The clients, on the other
hand, don't need to know anything about how the database is stored. Clients can be specialized for
different needs and have different user interfaces.

This organization is quite typical for Unix databases — so much so that it is often possible to mix and
match SQL clients and SQL servers. The interoperability issues are the SQL server's TCP/IP port
number, and whether client and server support the same dialect of SQL.

Case Study: Freeciv

In Chapter 6, we introduced Freeciv as an example of transparent data formats. But more critical to

the way it supports multiplayer gaming is the client/server partitioning of the code. Thisisa
representative example of a program in which the application needs to be distributed over awide-area
network and handles communication through TCP/IP sockets.

The state of arunning Freeciv game is maintained by a server process, the game engine. Players run
GUI clients which exchange information and commands with the server through a packet protocol.
All gamelogicishandled in the server. The details of GUI are handled in the client; different clients
support different interface styles.

Thisisavery typical organization for amultiplayer online game. The packet protocol uses TCP/IP as
atransport, so one server can handle clients running on different Internet hosts. Other games that are
more like real-time simulations (notably first-person shooters) use raw Internet datagram protocol
(UDP) and trade lower latency for some uncertainty about whether any given packet will be
delivered. In such games, users tend to be issuing control actions continuously, so sporadic dropouts
aretolerable, but lag isfatal.

Shared Memory

Whereas two processes using sockets to communicate may live on different machines (and, in fact, be
separated by an Internet connection spanning half the globe), shared memory requires producers and
consumers to be co-resident on the same hardware. But, if your communicating processes can get
access to the same physical memory, shared memory will be the fastest way to pass information
between them.



Shared memory may be disguised under different APIs, but on modern Unixes the implementation
normally depends on the use of mmap(2) to map files into memory that can be shared between
processes. POSI X defines ashm_open(3) facility with an API that supports using files as shared
memory; thisis mostly a hint to the operating system that it need not flush the pseudofile data to disk.

Because access to shared memory is not automatically serialized by a discipline resembling read and
write calls, programs doing the sharing must handle contention and deadlock issues themselves,
typically by using semaphore variables |ocated in the shared segment. The issues here resemble those
in multithreading (see the end of this chapter for discussion) but are more manageable because
default is not to share memory. Thus, problems are better contained.

On systems where it is available and reliable, the Apache web server's scoreboard facility uses shared
memory for communication between an Apache master process and the load-sharing pool of Apache
images that it manages. Modern X implementations also use shared memory, to pass large images
between client and server when they are resident on the same machine, to avoid the overhead of
socket communication. Both uses are performance hacks justified by experience and testing, rather
than being architectural choices.

The mmap(2) call is supported under all modern Unixes, including Linux and the open-source BSD
versions; thisis described in the Single Unix Specification. It will not normally be available under
Windows, MacOS classic, and other operating systems.

Before purpose-built mmap(2) was available, acommon way for two processes to communicate was
for them to open the same file, and then delete that file. The file wouldn't go away until all open
filehandles were closed, but some old Unixes took the link count falling to zero as a hint that they
could stop updating the on-disk copy of the file. The downside was that your backing store was the
file system rather than a swap device, the file system the deleted file lived on couldn't be unmounted
until the programs using it closed, and attaching new processes to an existing shared memory
segment faked up in thisway was tricky at best.

After Version 7 and the split between the BSD and System V lineages, the evolution of Unix
Interprocess communication took two different directions. The BSD direction led to sockets. The
AT&T lineage, on the other hand, devel oped named pipes (as previously discussed) and an IPC
facility, specifically designed for passing binary data and based on shared-memory bidirectional
message queues. Thisiscalled ‘ System V |PC'—or, among old timers, ‘Indian Hill" I1PC after the
AT&T facility where it was first written.

The upper, message-passing layer of System V IPC has largely fallen out of use. The lower layer,
which consists of shared memory and semaphores, still has significant applications under
circumstances in which one needs to do mutual-exclusion locking and some global data sharing
among processes running on the same machine. These System V shared memory facilities evolved
into the POSI X shared-memory API, supported under Linux, the BSDs, MacOS X and Windows, but
not classic MacOS.

By using these shared-memory and semaphore facilities (shmget(2), semget(2), and friends) one can



avoid the overhead of copying data through the network stack. Large commercial databases
(including Oracle, DB2, Sybase, and Informix) use this technique heavily.

(8] A common error in programming shellouts is to forget to block signalsin the parent while the

subprocess runs. Without this precaution, an interrupt typed to the subprocess can have unwanted
side effects on the parent process.

(9 Actual ly, the aboveis a dight oversimplification. See the discussion of EDI TOR and VI SUAL in
Chapter 10 for the rest of the story.

[ The less(1) man page explains the name by observing “Lessis more”.

[11 A common error isto use $* rather than “$@. This does bad thi ngs when handed a filename

with embedded spaces.

2] gmail-popup's standard input and standard output are the socket, and standard error (which will
be file descriptor 2) goesto alog file. File descriptor 3 is guaranteed to be the next to be allocated. As
an infamous kernel comment once observed: “Y ou are not expected to understand this”.

[”3] The friend who suggested this case study comments:. “Y es, you can get away with this technique...
if there are just afew easily-recognizable nuggets of information coming back from the slave process,
and you have tongs and aradiation suit”.

[ A particularly nasty variant of this attack isto drop in a named Unix-domain socket where the
producer and consumer programs are expecting the tempfile to be.

[”] A “race condition’ is aclass of problem in which correct behavior of the system relies on two
independent events happening in the right order, but there is no mechanism for ensuring that they
actually will. Race conditions produce intermittent, timing-dependent problems that can be devilishly
difficult to debug.
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Problems and Methods to Avoid

While BSD-style sockets over TCP/IP have become the dominant IPC method under Unix, there are
still live controversies over the right way to partition by multiprogramming. Some obsolete methods
have not yet completely died, and some techniques of questionable utility have been imported from
other operating systems (often in association with graphics or GUI programming). We'll be touring
some dangerous swamps here; beware the crocodiles.

Obsolescent Unix IPC Methods

Unix (born 1969) long predates TCP/IP (born 1980) and the ubiquitous networking of the 1990s and
later. Anonymous pipes, redirection, and shellout have been in Unix since very early days, but the
history of Unix islittered with the corpses of APIstied to obsolescent IPC and networking models,
beginning with the mx () facility that appeared in Version 6 (1976) and was dropped before Version
7 (1979).

Eventually BSD sockets won out as | PC was unified with networking. But this didn't happen until
after fifteen years of experimentation that left a number of relics behind. It's useful to know about
these because there are likely to be references to them in your Unix documentation that might give
the misleading impression that they're still in use. These obsolete methods are described in more
detail in Unix Network Programming [ Stevens90].

The real explanation for all the dead I1PC facilitiesin old AT& T Unixes was
politics. The Unix Support Group was headed by alow-level manager, while
some projects that used Unix were headed by vice presidents. They had ways to
make irresistible requests, and would not brook the objection that most IPC
mechanisms are interchangeable.

-- Doug Mcllroy

System V IPC

The System V |PC facilities are message-passing facilities based on the System V shared memory
facility we described earlier.

Programs that cooperate using System V |PC usually define shared protocols based on exchanging
short (up to 8K) binary messages. The relevant manual pages are msgctl(2) and friends. Asthis style
has been largely superseded by text protocols passed between sockets, we do not give an example
here.

The System V |PC facilities are present in Linux and other modern Unixes. However, asthey are a



legacy feature, they are not exercised very often. The Linux version is still known to have bugs as of
mid-2003. Nobody seemsto care enough to fix them.

Streams

Streams networking was invented for Unix Version 8 (1985) by Dennis Ritchie. A re-implementation
called STREAMS (yes, it is dl-capitals in the documentation) first became available in the 3.0
release of System V Unix (1986). The STREAMS facility provided a full-duplex interface
(functionally not unlike a BSD socket, and like sockets, accessible through normal read(2) and write
(2) operations after initial setup) between a user process and a specified device driver in the kernel.
The device driver might be hardware such as a serial or network card, or it might be a software-only
pseudodevice set up to pass data between user processes.

An interesting feature of both streams and STREAM S’ isthat it is possible to push protocol-
translation modules into the kernel's processing path, so that the device the user process ‘ sees
through the full-duplex channel is actually filtered. This capability could be used, for example, to
implement a line-editing protocol for aterminal device. Or one could implement protocols such as IP
or TCP without wiring them directly into the kernel.

Streams originated as an attempt to clean up a messy feature of the kernel called ‘line disciplines’ —
alternative modes of processing character streams coming from serial terminals and early local-area
networks. But as serial terminals faded from view, Ethernet LANs became ubiquitous, and TCP/IP
drove out other protocol stacks and migrated into Unix kernels, the extra flexibility provided by
STREAMS had less and less utility. In 2003, System V Unix still supports STREAMS, as do some
System V/BSD hybrids such as Digital Unix and Sun Microsystems' Solaris.

Linux and other open-source Unixes have effectively discarded STREAMS. Linux kernel modules
and libraries are available from the LiS project, but (as of mid-2003) are not integrated into the stock

Linux kernel. They will not be supported under non-Unix operating systems.

Remote Procedure Calls

Despite occasional exceptions such as NFS (Network File System) and the GNOME project, attempts
to import CORBA, ASN.1, and other forms of remote-procedure-call interface have largely failed —
these technol ogies have not been naturalized into the Unix culture.

There seem to be several underlying reasons for this. Oneisthat RPC interfaces are not readily
discoverable; that is, it isdifficult to query these interfaces for their capabilities, and difficult to
monitor them in action without building single-use tools as complex as the programs being monitored
(we examined some of the reasons for thisin Chapter 6). They have the same version skew problems
as libraries, but those problems are harder to track because they're distributed and not generally
obvious at link time.

As arelated issue, interfaces that have richer type signatures aso tend to be more complex, therefore



more brittle. Over time, they tend to succumb to ontology creep as the inventory of types that get
passed across interfaces grows steadily larger and the individual types more elaborate. Ontology
creep is a problem because structs are more likely to mismatch than strings; if the ontologies of the
programs on each side don't exactly match, it can be very hard to teach them to communicate at all,
and fiendishly difficult to resolve bugs. The most successful RPC applications, such as the Network
File System, are those in which the application domain naturally has only afew simple data types.

The usual argument for RPC isthat it permits “richer” interfaces than methods like text streams —
that is, interfaces with a more elaborate and application-specific ontology of data types. But the Rule
of Simplicity applies! We observed in Chapter 4 that one of the functions of interfacesis as choke

points that prevent the implementation details of modules from leaking into each other. Therefore, the
main argument in favor of RPC is also an argument that it increases global complexity rather than
minimizing it.

With classical RPC, it's too easy to do things in a complicated and obscure way instead of keeping
them simple. RPC seems to encourage the production of large, baroque, over-engineered systems
with obfuscated interfaces, high global complexity, and serious version-skew and reliability problems
— aperfect example of thick glue layers run amok.

Windows COM and DCOM are perhaps the archetypal examples of how bad this can get, but there
are plenty of others. Apple abandoned OpenDoc, and both CORBA and the once wildly hyped Java
RMI have receded from view in the Unix world as people have gained field experience with them.
Thismay well be because these methods don't actually solve more problems than they cause.

Andrew S. Tanenbaum and Robbert van Renesse have given us a detailed analysis of the general
problem in A Critique of the Remote Procedure Call Paradigm [ Tanenbaum-V anRenesse], a paper

which should serve as a strong cautionary note to anyone considering an architecture based on RPC.

All these problems may predict long-term difficulties for the relatively few Unix projects that use

RPC. Of these projects, perhaps the best known isthe GNOME desktop effort.[”] These problems
also contribute to the notorious security vulnerabilities of exposing NFS servers.

Unix tradition, on the other hand, strongly favors transparent and discoverable interfaces. Thisis one
of the forces behind the Unix culture's continuing attachment to IPC through textual protocols. It is
often argued that the parsing overhead of textual protocolsis a performance problem relative to
binary RPCs — but RPC interfaces tend to have latency problems that are far worse, because (a) you
can't readily anticipate how much data marshaling and unmarshaling a given call will involve, and (b)
the RPC model tends to encourage programmers to treat network transactions as cost-free. Adding
even one additional round trip to a transaction interface tends to add enough network latency to
swamp any overhead from parsing or marshaling.

Even if text streams were less efficient than RPC, the performance loss would be marginal and linear,
the kind better addressed by upgrading your hardware than by expending development time or adding
architectural complexity. Anything you might lose in performance by using text streams, you gain
back in the ability to design systems that are ssmpler — easier to monitor, to model, and to



understand.

Today, RPC and the Unix attachment to text streams are converging in an interesting way, through
protocols like XML-RPC and SOAP. These, being textual and transparent, are more palatable to Unix
programmers than the ugly and heavyweight binary serialization formats they replace. While they
don't solve all the more general problems pointed out by Tanenbaum and van Renesse, they do in
some ways combine the advantages of both text-stream and RPC worlds.

Threads — Threat or Menace?

Though Unix devel opers have long been comfortable with computation by multiple cooperating
processes, they do not have a native tradition of using threads (processes that share their entire
address spaces). These are arecent import from elsewhere, and the fact that Unix programmers
generaly dislike them is not merely accident or historical contingency.

From a complexity-control point of view, threads are a bad substitute for lightweight processes with
their own address spaces; the idea of threads is native to operating systems with expensive process-
spawning and weak | PC facilities.

By definition, though daughter threads of a process typically have separate |ocal-variable stacks, they
share the same global memory. The task of managing contentions and critical regionsin this shared
address space is quite difficult and afertile source of global complexity and bugs. It can be done, but
as the complexity of one's locking regime rises, the chance of races and deadlocks due to
unanticipated interactions rises correspondingly.

Threads are afertile source of bugs because they can too easily know too much about each others
internal states. There is no automatic encapsulation, as there would be between processes with
separate address spaces that must do explicit IPC to communicate. Thus, threaded programs suffer
from not just ordinary contention problems, but from entire new categories of timing-dependent bugs
that are excruciatingly difficult to even reproduce, let alone fix.

Thread devel opers have been waking up to this problem. Recent thread implementations and
standards show an increasing concern with providing thread-local storage, which isintended to limit
problems arising from the shared global address space. Asthreading APIs movein this direction,
thread programming starts to look more and more like a controlled use of shared memory.

Threads often prevent abstraction. In order to prevent deadlock, you often need
to know how and if the library you are using uses threads in order to avoid
deadlock problems. Similarly, the use of threadsin alibrary could be affected by
the use of threads at the application layer.

-- David Korn

To add insult to injury, threading has performance costs that erode its advantages over conventional
process partitioning. While threading can get rid of some of the overhead of rapidly switching
process contexts, locking shared data structures so threads won't step on each other can be just as



expensive.

The X server, ableto execute literally millions of ops/second, is not threaded; it
uses a poll/select loop. Various efforts to make a multithreaded implementation
have come to no good result. The costs of locking and unlocking get too high for
something as performance-sensitive as graphics servers.

-- Jim Gettys

This problem is fundamental, and has also been a continuing issue in the design of Unix kernelsfor
symmetric multiprocessing. As your resource-locking gets finer-grained, latency due to locking
overhead can increase fast enough to swamp the gains from locking less core memory.

Onefina difficulty with threadsis that threading standards still tend to be weak and underspecified
as of mid-2003. Theoretically conforming libraries for Unix standards such as POSIX threads
(1003.1c) can nevertheless exhibit alarming differences in behavior across platforms, especially with
respect to signals, interactions with other |PC methods, and resource cleanup times. Windows and
classic MacOS have native threading models and interrupt facilities quite different from those of
Unix and will often require considerable porting effort even for simple threading cases. The upshot is
that you cannot count on threaded programs to be portable.

For more discussion and a lucid contrast with event-driven programming, see Why Threads Are a
Bad Idea [Ousterhout96].

[”%] STREAMS was much more complex. Dennis Ritchieis reputed to have said “ Streams means
something different when shouted”.

[“] GNOME's main competitor, KDE, started with CORBA but abandoned it in their 2.0 release.
They have been on a quest for lighter-weight IPC methods ever since.
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Process Partitioning at the Design Level
Now that we have al these methods, what should we do with them?

The first thing to notice is that tempfiles, the more interactive sort of master/slave process
relationship, sockets, RPC, and all other methods of bidirectional I1PC are at some level equivalent —
they're all just ways for programs to exchange data during their lifetimes. Much of what wedo ina
sophisticated way using sockets or shared memory we could do in a primitive way using tempfiles as
mailboxes and signals for notification. The differences are at the edges, in how programs establish
communication, where and when one does the marshalling and unmarshalling of messages, in what
sorts of buffering problems you may have, and atomicity guarantees you get on the messages (that is,
to what extent you can know that the result of a single send action from one side will show up asa
single receive event on the other).

We've seen from the PostgreSQL study that one effective way to hold down complexity isto break an
application into a client/server pair. The PostgreSQL client and server communicate through an
application protocol over sockets, but very little about the design pattern would change if they used
any other bidirectional |PC method.

Thiskind of partitioning is particularly effective in situations where multiple instances of the
application must manage access to resources that are shared among all. A single server process may
manage all resource contention, or cooperating peers may each take responsibility for some critical
resource.

Client-server partitioning can also help distribute cycle-hungry applications across multiple hosts. Or
it may make them suitable for distributed computing across the Internet (as with Freeciv). Well
discuss the related CLI server pattern in Chapter 11.

Because all these peer-to-peer |PC techniques are alike at some level, we should evaluate them

mainly on the amount of program-complexity overhead they incur, and how much opacity they

introduce into our designs. This, ultimately, iswhy BSD sockets have won over other Unix |PC
methods, and why RPC has generally failed to get much traction.

Threads are fundamentally different. Rather than supporting communication among different
programs, they support a sort of timesharing within an instance of a single program. Rather than
being away to partition a big program into smaller ones with simpler behavior, threading is strictly a
performance hack. It has all the problems normally associated with performance hacks, and afew
special ones of its own.

Accordingly, while we should seek ways to break up large programsinto ssmpler cooperating
processes, the use of threads within processes should be a last resort rather than afirst. Often, you



may find you can avoid them. If you can use limited shared memory and semaphores, asynchronous I/
Ousing SI d O, or poll(2)/select(2) rather than threading, do it that way. Keep it ssimple; use
techniques earlier on this list and lower on the complexity scale in preference to later ones.

The combination of threads, remote-procedure-call interfaces, and heavyweight object-oriented
design is especially dangerous. Used sparingly and tastefully, any of these techniques can be valuable
— but if you are ever invited onto a project that is supposed to feature all three, fleeing in terror
might well be an appropriate reaction.

We have previously observed that programming in the real world is all about managing complexity.
Tools to manage complexity are good things. But when the effect of those toolsisto proliferate
complexity rather than to control it, we would be better off throwing them away and starting from
zero. An important part of the Unix wisdom is to never forget this.
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A good notation has a subtlety and suggestiveness which at times makes it almost seem like a live
teacher.

-- Bertrand Russell The World of Mathematics (1956)

One of the most consistent results from large-scale studies of error patterns in software is that
programmer error rates in defects per hundreds of lines are largely independent of the language in

which the programmers are coding.[”®l Higher-level languages, which allow you to get more done in
fewer lines, mean fewer bugs as well.

Unix has along tradition of hosting little languages specialized for a particular application domain,



languages that can enable you to drastically reduce the line count of your programs. Domain-specific
language examples include the numerous Unix typesetting languages (troff, egn, thl, pic, grap), shell
utilities (awk, sed, dc, bc), and software development tools (make, yacc, lex). Thereis afuzzy
boundary between domain-specific languages and the more flexible sort of application run-control
file (sendmail, BIND, X); another with data-file formats; and another with scripting languages (which

welll survey in Chapter 14).

Historically, domain-specific languages of this kind have been called ‘little languages’ or
‘minilanguages’ in the Unix world, because early examples were small and low in complexity
relative to general-purpose languages (all three terms for the category are in common use). But if the
application domain is complex (in that it has |ots of different primitive operations or involves
manipulation of intricate data structures), an application language for it may have to be rather more
complex than some general-purpose languages. Wel'll keep the traditional term ‘minilanguage’ to
emphasize that the wise course is usually to keep these designs as small and simple as possible.

The domain-specific little language is an extremely powerful design idea. It allows you to define your
own higher-level language to specify the appropriate methods, rules, and algorithms for the task at
hand, reducing global complexity relative to a design that uses hardwired lower-level code for the
same ends. Y ou can get to a minilanguage design in at least three ways, two of them good and one of
them dangerous.

Oneright way to get there isto realize up front that you can use a minilanguage design to push a
given specification of a programming problem up alevel, into a notation that is more compact and
expressive than you could support in a general-purpose language. As with code generation and data-
driven programming, a minilanguage lets you take practical advantage of the fact that the defect rate
in your software will be largely independent of the level of the language you are using; more
expressive languages mean shorter programs and fewer bugs.

The second right way to get to a minilanguage design is to notice that one of your specification file
formatsis looking more and more like a minilanguage — that is, it is developing complex structures
and implying actions in the application you are controlling. Isit trying to describe control flow as
well as data layouts? If so, it may be time to promote that control flow from being implicit to being
explicit in your specification language.

The wrong way to get to a minilanguage design is to extend your way to it, one patch and crufty
added feature at atime. On this path, your specification file keeps sprouting more implied control
flow and more tangled special-purpose structures until it has become an ad-hoc language without
your noticing it. Some legendary nightmares have been spawned this way; the example every Unix
guru will think of (and shudder over) isthesendmai | . cf configuration file associated with the
sendmail mail transport.

Sadly, most people do their first minilanguage the wrong way, and only realize later what amessitis.
Then the question is: how to clean it up? Sometimes the answer implies rethinking the entire
application design. Another notorious example of language-by-feature creep was the editor TECO,
which grew first macros and then loops and conditionals as programmers wanted to use it to package



increasingly complex editing routines. The resulting ugliness was eventually fixed by aredesign of
the entire editor to be based on an intentional language; thisis how Emacs Lisp (which we'll survey
below) evolved.

All sufficiently complicated specification files aspire to the condition of minilanguages. Therefore, it
will often be the case that your only defense against designing a bad minilanguage is knowing how to
design agood one. This need not be a huge step or involve knowing alot of formal language theory;
with modern tools, learning afew relatively simple techniques and bearing good examples in mind as
you design should be sufficient.

In this chapter we'll examine all the kinds of minilanguages normally supported under Unix, and try
to identify the kinds of situation in which each of them represents an effective design solution. This
chapter is not meant to be an exhaustive catalog of Unix languages, but rather to bring out the design
principles involved in structuring an application around a minilanguage. We'll have much more to say
about languages for general-purpose programming in Chapter 14.

WEe'll need to start by doing alittle taxonomy, so we'll know what we're talking about later on.

[8] Les Hatton reports by email on the analysisin his book in preparation, Software Failure:
“Provided you use executable line counts for the density measure, the injected defect densities vary
less between languages than they do between engineers by about a factor of 10”.
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Understanding the Taxonomy of Languages

All the languagesin Figure 8.1 are described in case studies, either in this chapter or elsewhere in this book. For the general -
purpose interpreters near the right-hand side, see Chapter 14.

Figure 8.1. Taxonomy of languages.
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In Chapter 5 we looked at Unix conventions for datafiles. There's a spectrum of complexity in these. At the low end are files that
make simpl e associations between names and properties; the/ et ¢/ passwd and . newsr ¢ formats are good examples. Further
up the scale we start to get formats that marshal or serialize data structures; the PNG and SNG formats are (equivaent) good
examples of this.

A structured data-file format starts to border on being a minilanguage when it expresses not just structure but actions performed on
some interpretive context (that is, memory that is outside the data file itself). XML markups tend to straddle this border; the
example we'll look at hereis Glade, a code generator for building GUI interfaces. Formats that are both designed to be read and
written by humans (rather than just programs) and are used to generate code, are firmly in the realm of minilanguages. yacc and lex
are the classic examples. We'll discuss glade, yacc and lex in Chapter 9.

The Unix macro processor, md, is another very simple declarative minilanguage (that is, one in which the program is expressed as a
set of desired relationships or constraints rather than explicit actions). It has often been used as a preprocessing stage for other
minilanguages.

Unix makefiles, which are designed to automate build processes, express dependency relationships between source and derived files

[ and the commands required to make each derived file from its sources. When you run make, it uses those declarations to walk
the implied tree of dependencies, doing the least work necessary to bring your build up to date. Like yacc and lex specifications,
makefiles are a declarative minilanguage; they set up constraints that imply actions performed on an interpretive context (in this
case, the portion of the file system where the source and generated files live). Well return to makefiles in Chapter 15.

XSLT, the language used to describe transformations of XML, is at the high end of complexity for declarative minilanguages. It's
complex enough that it's not normally thought of as aminilanguage at all, but it shares some important characteristic of such
languages which we'll examine when we look at it in more detail below.

The spectrum of minilanguages ranges from declarative (with implicit actions) to imperative (with explicit actions). The run-
control syntax of fetchmail(1) can be viewed as either avery weak imperative language or a declarative language with implied
control flow. The troff and PostScript typesetting languages are imperative languages with alot of special-purpose domain
expertise baked into them.

Some task-specific imperative minilanguages start to border on being general-purpose interpreters. They reach thislevel when they



are explicitly Turing-complete—that is, they can do both conditionals and loops (or recursi on)[@] with features that are designed to
be used as control structures. Some languages, by contrast, are only accidentally Turing-complete — they have features that can be
used to implement control structures as a sort of side effect of what they are actually designed to do.

The bc(1) and dc(1) interpreters we looked at in Chapter 7 are good examples of specialized imperative minilanguages that are
explicitly Turing-complete.

We are over the border into general-purpose interpreters when we reach languages like Emacs Lisp and JavaScript that are
designed to be full programming languages run in specialized contexts. We'll have more to say about these when we discuss
embedded scripting languages later on.

The spectrum in interpretersis one of increasing generality; the flip side of thisisthat a more general-purpose interpreter embodies
fewer assumptions about the context in which it runs. With increasing generality there usually comes aricher ontology of data
types. Shell and Tcl have relatively simple ontologies; Perl, Python, and Java more complex ones. We'll return to these general-

purpose languages in Chapter 14.

[ For less technical readers: the compiled form of a C program is derived from its C source form by compilation and linkage. The
PostScript version of atroff document is derived from the troff source; the command to make the former from the latter is a troff
invocation. There are many other kinds of derivation; makefiles can express aimost all of them.

89 Any Turing-complete language could theoretically be used for general-purpose programming, and is theoretically exactly as
powerful as any other Turing-complete language. In practice, some Turing-complete languages would be far too painful to use for
anything outside a specified and narrow problem domain.
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Applying Minilanguages

Designing with minilanguages involves two distinct challenges. One is having existing
minilanguages handy in your toolkit, and recognizing when they can be applied as-is. The other is
knowing when it is appropriate to design a custom minilanguage for an application. To help you
develop both aspects of your design sense, about half of this chapter will consist of case studies.

Case Study: sng

In Chapter 6 we looked at sng(1), which trandates between PNG and an editable all-text

representation of the same bits. The SNG data-file format is worth reexamining for contrast here
because it is not quite a domain-specific minilanguage. It describes a data layout, but doesn't
associate any implied sequence of actions with the data.

SNG does, however, share one important characteristic with domain-specific minilanguages that
binary structured data formats like PNG do not — transparency. Structured data files make it possible
for editing, conversion, and generation tools to cooperate without knowing about each others design
assumptions other than through the medium of the minilanguage. What SNG adds s that, like a
domain-specific minilanguage, it's designed to be easy to parse by eyeball and edit with general-
purpose tools.

Case Study: Regular Expressions

A kind of specification that turns up repeatedly in Unix tools and scripting languagesis the regular
expression (‘regexp’ for short). We consider it here as a declarative minilanguage for describing text
patterns; it is often embedded in other minilanguages. Regexps are so ubiquitous that the are hardly
thought of as a minilanguage, but they replace what would otherwise be huge volumes of code
implementing different (and incompatible) search capabilities.

Thisintroduction skates over some details like POSI X extensions, back-references, and
internationalization features; for a more compl ete treatment, see Mastering Regular Expressions

[Friedl].

Regular expressions describe patterns that may either match or fail to match against strings. The
simplest regular-expression tool is grep(1), afilter that passes through to its output every linein its
input matching a specified regexp. Regexp notation is summarized in Table 8.1.

Table 8.1. Regular-expression examples.



Regexp Matches
"X.y" x followed by any character followed by y.
"x\.y" x followed by aliteral period followed by y.
" " x followed by at most one z followed by y; thus, " xy" or " xzy" but not" xz"
Xz?y " "
or " xdy".
gk x followed by any number of instances of z, followed by y; thus, " xy" or
y "Xxzy" or"xzzzy" butnot"xz" or" xdy".
g4y x followed by one or more instances of z, followed by y; thus, " xzy" or
y "xzzy" butnot" xy" or"xz" or"xdy".
N N s followed by any of the charactersx ory or z, followed by t ; thus, " sxt " or
s[xyz]t " . . . N
syt" or"szt" butnot"st" or"sat".
* a[ x0- 9] b" a followed by either x or charactersin the range 09, followed by b; thus,
"axb" or"alOb" or"a4b" butnot"ab" or"aab".
" . |s followed by any character that isnot x ory or z, followed by t ; thus, " sdt “
s[ *xyz]t " " " . . .
or"set" butnot"sxt" or"syt" or"szt".
" S[Ax0- 9] t " s followed by any character that isnot x or in the range 09, followed by t ; thus,
"slt" or"snt" butnot"sxt" or"sOt" or"s4t".
"AX" x at the beginning of astring; thus, " xzy" or" xzzy" butnot"yzy" or"yxy".
"x$" X at theend of astring; thus, " yzx" or "yx" butnot"yxz" or" zxy".

There are anumber of minor variants of regexp notation:

1. Glob expressions. Thisisthe limited set of wildcard conventions used by early Unix shells for
filename matching. There are only three wildcards: * , which matches any sequence of
characters (like . * in the other variants); ?, which matches any single character (like. inthe
other variants); and [ . . . ] , which matches a character class just asin the other variants.
Some shells (csh, bash, zsh) later added { } for alternation. Thus, x{ a, b} ¢ matches xac or
xbc but not xc. Some shells further extend globs in the direction of extended regular
expressions.

2. Basicregular expressions. Thisis the notation accepted by the original grep(1) utility for
extracting lines matching a given regexp from afile. The line editor ed(1), the stream editor
sed(1), also use these. Old Unix hands think of these as the basic or ‘vanilla flavor of regexp;
people first exposed to the more modern tools tend to assume the extended form described
next.

3. Extended regular expressions. Thisis the notation accepted by the extended grep utility egrep
(1) for extracting lines matching a given regexp from afile. Regular expressionsin Lex and
the Emacs editor are very close to the egrep flavor.

4. Perl regular expressions. Thisis the notation accepted by Perl and Python regexp functions.



These are quite a bit more powerful than the egrep flavor.

Now that we've looked at some motivating examples, Table 8.2 isa summary of the standard regular-
expression wildcards. Note: we're not including the glob variant in this table, so avalue of “All”

implies only all three of the basic, extended/Emacs, and Perl/Python variants.[8l]

Table 8.2. Introduction to regular-expression operations.

egrep/Emacs, Perl/Python

Wildcard Supported in Matches
Escape next character. Toggles whether
following punctuation is treated as a

\ All wildcard or not. Following letters or digits
are interpreted in various different ways
depending on the program.

All Any character.

A All Beginning of line

$ All End of line

[...] |Al Any of the characters between the brackets

A Any characters except those between the

[~ ..] |Al
brackets.

. All Accept any number of instances of the
previous element.

- Accept zero or one instances of the previous

element.

egrep/Emacs, Perl/Python

Accept one or more instances of the
previous element.

{n}

egrep, Perl/Python; as\ { n\'} in Emacs

Accept exactly n repetitions of the previous
element. Not supported by some older
regexp engines.

{n}

egrep, Perl/Python; as\ {n, \ } in Emacs

Accept n or more repetitions of the previous
element. Not supported by some older
regexp engines.

{m n}

egrep, Perl/Python; as\ {m n\ } in Emacs

Accept at least mand at most n repetitions
of the previous element. Not supported by
some older regexp engines.

egrep, Perl/Python; as\ | in Emacs

Accept the element to the left or the element
to theright. Thisis usually used with some
form of pattern-grouping delimiters.




Treat this pattern as a group (in newer
Perl/Python; as\ (. ..\) inolder regexp engines like Perl and Python's).
vVersions. Older regexp engines such asthosein

Emacsand grep require\ (... \).

Design practice in new languages with regexp support has stabilized on the Perl/Python variant. It is
more transparent than the others, notably because backlash before a non-al phanumeric character
always means that character as aliteral, so there is much less confusion about how to quote elements
of regexps.

Regular expressions are an extreme example of how concise a minilanguage can be. Simple regular
expressions express recognition behavior that would otherwise have to be implenented with hundreds
of lines of fussy, bug-prone code.

Case Study: Glade

Gladeis an interface builder for the open-source GTK toolkit library for X 182 Glade alows you to
develop a GUI interface by interactively picking, placing, and modifying widgets on an interface
panel. The GUI editor produces an XML file describing the interface; this, in turn, can be fed to one
of several code generators that will actually grind out C, C++, Python or Perl code for the interface.
The generated code then calls functions you write to supply behavior to the interface.

Glade's XML format for describing GUIsis a good example of a simple domain-specific
minilanguage. See Example 8.1 for a“Hello, world!” GUI in Glade format.

Example 8.1. Glade “Hello, World”.

<?xm version="1.0"7?>
<GIK-I nterface>

<wi dget >

<cl ass>& kW ndow</ cl ass>
<nane>Hel | oW ndow</ nane>
<bor der w dt h>5</ border_w dt h>
<Si gnal >

<nane>dest r oy</ nanme>

<handl er >gt k_mai n_qui t </ handl| er >
</ Si gnal >
<title>Hello</title>
<t ype>GIK_W NDOW TOPLEVEL</type>
<posi ti on>GTK_W N _POS_NONE</ posi ti on>
<al | ow shri nk>True</al | ow _shri nk>
<al | ow_grow>True</ al | ow_gr ow>



<aut o_shri nk>Fal se</ aut o_shri nk>

<wi dget >
<cl ass>G kBut t on</ cl ass>
<nane>Hel | o Wor | d</ nane>
<can_focus>True</can_focus>
<Si gnal >
<nane>cl i cked</ nanme>
<handl er >gt k_wi dget _destroy</ handl er>
<obj ect >Hel | oW ndow</ obj ect >
</ Si gnal >
<| abel >Hel | o Wor| d</ | abel >
</ wi dget >
</ w dget >

</ GTK-I nterface>

A valid specification in Glade format implies a repertoire of actions by the GUI in response to user
behavior. The Glade GUI treats these specifications as structured data files; Glade code generators,
on the other hand, use them to write programs implementing a GUI. For some languages (including
Python), there are runtime libraries that allow you to skip the code-generation step and simply
instantiate the GUI directly at runtime from the XML specification (interpreting Glade markup, rather
than compiling it to the host language). Thus, you get the choice of trading space efficiency for
startup speed or vice versa.

Once you get past the verbosity of XML, Glade markup is afairly simple language. It does just two
things: declare GUI-widget hierarchies and associate properties with widgets. Y ou don't actually have
to know alot about how glade works to read the specification above. In fact, if you have any
experience programming in GUI toolkits, reading it will immediately give you afairly good
visualization of what glade does with the specification. (Hands up everyone who predicted that this
particular specification will give you a single button widget in awindow frame.)

Thiskind of transparency and ssimplicity is the mark of a good minilanguage design. The mapping
between the notation and domain objects is very clear. The relationships between objects are
expressed directly, rather than through name references or some other sort of indirection that you
have to think to follow.

The ultimate functional test of a minilanguage like thisoneis simple: can | hack it without reading
the manual? For a significant range of cases, the Glade answer isyes. For example, if you know the
C-level constants that GTK uses to describe window-positioning hints, you'll recognize

GTK_W N_POS_NONE as one and instantly be able to change the positioning hint associated with
this GUI.

The advantage of using Glade should be clear. It specializes in code generation so you don't have to.



That's one less routine task you have to hand-code, and one fewer source of hand-coded bugs.

More information, including source code and documentation and links to sample applications, is
available at the Glade project page. Glade has been ported to Windows.

Case Study: m4

The m4(1) macro processor interprets a declarative minilanguage for describing transformations of
text. An m4 program is a set of macros that specifies ways to expand text strings into other strings.
Applying those declarations to an input text with m4 performs macro expansion and yields an output
text. (The C preprocessor performs similar services for C compilers, though in arather different style.)

Example 8.2 shows an m4 macro that directs m4 to expand each occurrence of the string "OS" in its

input into the string "operating system™ on output. Thisisatrivial example; m4 supports macros with
arguments that can be used to do more than transform one fixed string into another. Typing info m4
at your shell prompt will probably display on-line documentation for this language.

Example 8.2. A sample m4 macro.
define(  OS', "operating system)

The m4 macro language supports conditionals and recursion. The combination can be used to
implement loops, and this was intended; m4 is deliberately Turing-complete. But actually trying to
use M4 as a general -purpose language would be deeply perverse.

The m4 macro processor is usually employed as a preprocessor for minilanguages that lack a built-in
notion of named procedures or a built-in file-inclusion feature. It's an easy way to extend the syntax
of the base language so the combination with m4 supports both these features.

One well-known use of M4 has been to clean up (or at least effectively hide) another minilanguage
design that was called out as a bad example earlier in this chapter. Most system administrators now
generate their sendmmai | . cf configuration files using an m4 macro package supplied with the
sendmail distribution. The macros start from feature names (or name/value pairs) and generate the
corresponding (much uglier) strings in the sendmail configuration language.

Use m4 with caution, however. Unix experience has taught minilanguage designersto be wary of
macro expansion,[® for reasons we'll discuss later in the chapter.

Case Study: XSLT

XSLT, like m4 macros, is alanguage for describing transformations of atext stream. But it does
much more than simple macro substitution; it describes transformations of XML data, including
guery and report generation. It is the language used to write XML stylesheets. For practical



applications, see the description of XML document processing in Chapter 18. XSLT is described by a
World Wide Web Consortium standard and has several open-source implementations.

XSLT and m4 macros are both purely declarative and Turing-complete, but XSLT supports only
recursions and not loops. It is quite complex, certainly the most difficult |language to master of any in

this chapter's case studies — and probably the most difficult of any language mentioned in this book.
&4

Despite its complexity, XSLT really isaminilanguage. It shares important (though not universal)
characteristics of the breed:

. A restricted ontology of types, with (in particular) no analog of record structures or arrays.

. Restricted interface to the rest of the world. XSLT processors are designed to filter standard
Input to standard output, with alimited ability to read and write files. They can't open sockets
or run subcommands.

Example 8.3. A sample XSL T program.

<?xm version="1.0"7?>
<xsl :styl esheet xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or ni'
version="1.0">
<xsl : out put net hod="xm"/>
<xsl:tenplate match="*">
<xsl : el ement nanme="{nane()}">

<xsl:for-each select="@">
<xsl : el enrent nanme="{nane()}">
<xsl : val ue-of select="."/>

</ xsl : el enent >
</ xsl : for-each>
<xsl :apply-tenplates select="*|text()"/>
</ xsl : el enent >
</ xsl :tenpl at e>
</ xsl : styl esheet >

The program in Example 8.3 transforms an XML document so that each attribute of every element is

transformed into a new tag pair directly enclosed by that element, with the attribute value as the tag
pair's content.

We'veincluded aglance at XSLT here partly to illustrate the point that ‘ declarative’ does not imply
either ‘ssmple’ or ‘weak’, and mostly because if you have to work with XML documents, you will
someday have to face the challenge that is XSLT.

XSLT: Mastering XML Transformations [ Tidwell] is agood introduction to the language. A brief



tutorial with examplesis available on the Web.[%]

Case Study: The Documenter's Workbench Tools

The troff(1) typesetting formatter was, as we noted in Chapter 2, Unix's original killer application.

troff is the center of a suite of formatting tools (collectively called Documenter's Workbench or
DWB), al of which are domain-specific minilanguages of various kinds. Most are either
preprocessors or postprocessors for troff markup. Open-source Unixes host an enhanced
implementation of Documenter's Workbench called groff(1), from the Free Software Foundation.

Wel'll examine troff in more detail in Chapter 18; for now, it's sufficient to note that it is a good

example of an imperative minilanguage that borders on being a full-fledged interpreter (it has
conditionals and recursion but not loops; it is accidentally Turing-complete).

The postprocessors (‘drivers’ in DWB terminology) are normally not visible to troff users. The
original troff emitted codes for the particular typesetter the Unix development group had available in
1970; later in the 1970s these were cleaned up into a device-independent minilanguage for placing
text and ssimple graphics on a page. The postprocessors translate this language (called “ditroff” for
“device-independent troff”) into something modern imaging printers can actually accept — the most
important of these (and the modern default) is PostScript.

The preprocessors are more interesting, because they actually add capabilities to the troff language.
There are three common ones: tbl(1) for making tables, eqn(1) for typesetting mathematical
equations, and pic(1) for drawing diagrams. Less used, but still live, are grn(1) for graphics, and refer
(1) and bib(1) for formatting bibliographies. Open-source equivalents of all of these ship with groff.
The grap(1) preprocessor provided arather versatile plotting facility; there is an open-source
implementation separate from groff.

Some other preprocessors have no open-source implementation and are no longer in common use.
Best known of these wasideal(1), for graphics. A younger sibling of the family, chem(1), draws

chemical structural formulas; it is available as part of Bell Labs's netlib code.l®

Each of these preprocessorsis alittle program that accepts a minilanguage and compilesit into troff
requests. Each one recognizes the markup it is supposed to interpret by looking for a unique start and
end request, and passes through unaltered any markup outside those (tbl looksfor .TS/.TE, pic looks
for .PS.PE, etc.). Thus, most of the preprocessors can normally be run in any order without stepping
on each other. There are some exceptions: in particular, chem and grap both issue pic commands, and
so must come before it in the pipeline.

cat thesis.nms | chem| tbl | refer | grap | pic | egn \
| groff -Tps >thesis.ps

The preceding is afull-Monty example of a Documenter's Workbench processing pipeline, for a
hypothetical thesis incorporating chemical formulas, mathematical equations, tables, bibliographies,



plots, and diagrams. (The cat(1) command simply copiesitsinput or afile argument to its output; we
use it here to emphasize the order of operations.) In practice modern troff implementations tend to
support command-line options that can invoke at least tbl(1), eqn(1) and pic(l), so it isn't necessary to
write such an elaborate pipeline. Evenif it were, these sorts of build recipes are normally composed
just once and stashed away in a makefile or shellscript wrapper for repeated use.

The document markup of Documenter's Workbench is in some ways obsol ete, but the range of
problems these preprocessors address gives some indication of the power of the minilanguage model
— it would be extremely difficult to embed equivalent knowledge into aWY SIWY G word processor.
There are some ways in which modern XM L-based document markups and toolchains are still, in
2003, playing catch-up with capabilities that Documenter's Workbench had in 1979. Welll discuss
these issues in more detail in Chapter 18.

The design themes that gave Documenter's Workbench so much power should by now be familiar
ones; al the tools share a common text-stream representation of documents, and the formatting
system is broken up into independent components that can be debugged and improved separately.
The pipeline architecture supports plugging in new, experimental preprocessors and postprocessors
without disturbing old ones. It is modular and extensible.

The architecture of Documenter's Workbench as a whole teaches us some things about how to fit
multiple specialist minilanguages into a cooperating system. One preprocessor can build on another.
Indeed, the Documenter's Workbench tools were an early exemplar of the power of pipes, filtering,
and minilanguages that influenced alot of later Unix design by example. The design of the individual
preprocessors has more lessons to teach about what effective minilanguage designs ook like.

One of these lessons is negative. Sometimes users writing descriptions in the minilanguages do
unclean things with low-level troff markup inserted by hand. This can produce interactions and bugs
that are hard to diagnose, because the generated troff coming out of the pipelineis not visible— and
would not be readable if it were. Thisis analogous to the sorts of bugs that happen in code that mixes
C with snippets of in-line assembler. It might have been better to separate the language layers more
completely, if that were possible. Minilanguage designers should take note of this.

All the preprocessor languages (though not troff markup itself) have relatively clean, shell-like
syntaxes that follow many of the conventions we described in Chapter 5 for the design of data-file

formats. There are afew embarrassing exceptions; notably, tbl(1) defaultsto using atab asafield
separator between table columns, replicating an infamous botch in the design of make(1) and causing
annoying bugs when editors or other tools invisibly change the composition of whitespace.

While troff itself is a specialized imperative language, one theme that runs through at least three of
the Documenter's Workbench minilanguages is declarative semantics: doing layout from constraints.
Thisisan ideathat shows up in modern GUI toolkits as well — that, instead of giving pixel
coordinates for graphical objects, what you really want to do is declare spatial relationships among
them (“widget A is above widget B, which isto the left of widget C”) and have your software
compute a best-fit layout for A, B, and C according to those constraints.



The pic(1) program uses this approach to lay out elements for diagrams. The language taxonomy

diagram at Figure 8.1 was produced with the pic source code in Example 8.41%7] run through
pic2graph, one of our case studiesin Chapter 7.

Example 8.4. Taxonomy of languages — the pic sour ce.

# M ni | anguage taxonony

#

# Base el lipses

define smallellipse {ellipse width 3.0 height 1.5}
M ellipse wwdth 3.0 height 1.8 fill 0.2

line fromMn to Ms dashed

D smallellipse() with .e at Mw + (0.8, 0)

line fromD.n to D.s dashed

|: smallellipse() with .wat Me - (0.8, 0)

#
# Captions

"Data formats" at D.s

"M ni | anguages” at Ms

"Interpreters" at |.s
#
# Heads
arrow fromD.w+ (0.4, 0.8) to D.e + (-0.4, 0.8)
"flat to structured"” "" at last arrow.c
arrow fromMw + (0.4, 1.0) to Me + (-0.4, 1.0)
"declarative to inperative" "" at last arrow c
arrow froml.w+ (0.4, 0.8) tol.e + (-0.4, 0.8)
"l ess to nore general™ "" at last arrow.c
#

# The arrow of | oopi ness
arrow fromD.w+ (0, 1.2) tol.e + (0, 1.2)

"increasing | oopiness” "" at last arrow.c

#

# Flat data files

"/etc/passwd" ".newsrc" at 0.5 between D.c and D.w

# Structured data files
"SNG' at 0.5 between D.c and Mw
# Datafil e/ mnilanguage borderline cases
"regexps" "d ade" at 0.5 between Mw and D. e
# Decl arative m nil anguages
"mi" "Yacc" "Lex" "make" "XSLT" "pic" "tbl" "egn" \
at 0.5 between Mc and D. e
# I nperative m nil anguages
"fetchmai |l " "awk" "troff" "Postscript” at 0.5 between Mc and |.w
# M nil anguage/interpreter borderline cases



"dc" "bc" at 0.5 between |I.w and Me

# Interpreters

"Emacs Lisp" "JavaScript" at 0.25 between Me and |.e
"sh" "tcl" at 0.55 between Me and |.e

"Perl" "Python" "Java" at 0.8 between Me and |.e

Thisisavery typical Unix minilanguage design, and as such has some points of interest even on the
purely syntactic level. Notice how much it looks like a shell program: # leads comments, and the
syntax is obviously token-oriented with the simplest possible convention for strings. The designer of
pic(1) knew that Unix programmers expect minilanguage syntaxes to look like thisunlessthereisa
strong and specific reason they should not. The Rule of Least Surpriseisin full operation here.

It probably doesn't take alot of effort to discern that the first line of code is a macro definition; the
later referencestosmnal | el | i pse() encapsulate arepeated design element of the diagram. Nor
will it take much scrutiny to deduce that box i nvi s declares abox with invisible borders, actually
just aframe for text to be stacked inside. The ar r ow command is equally obvious.

With these as clues and one eye on the actual diagram, the meaning of the remaining pieces of the
syntax (position references like M s and constructionslikel ast arroworat 0. 25 bet ween
M e and | . e ortheaddition of vector offsetsto alocation) should become rapidly apparent. As
with Glade markup and m4, an example like this one can teach a good bit of the language without any
reference to amanual (a compactness property troff(1) markup, unfortunately, does not have).

The example of pic(1) reflects acommon design theme in minilanguages, which we also saw
reflected in Glade — the use of a minilanguage interpreter to encapsul ate some form of constraint-
based reasoning and turn it into actions. We could actually choose to view pic(1) as an imperative
language rather than a declarative one; it has elements of both, and the dispute would quickly grow
theological.

The combination of macros with constraint-based layout gives pic(1) the ability to expressthe
structure of diagramsin away that more modern vector-based markups like SV G cannot. It is
therefore fortunate that one effect of the Documenter's Workbench design isto make it relatively easy
to keep pic(l) useful outside the DWB context. The pic2graph script we used as a case study in
Chapter 7 was an ad-hoc way to accomplish this, using the retrofitted PostScript capability of groff(1)

as a half-way step to amodern bitmap format.

A cleaner solution is the pic2plot(1) utility distributed with the GNU plotutils package, which
exploited the internal modularity of the GNU pic(1) code. The code was split into a parsing front end
and aback end that generated troff markup, the two communicating through alayer of drawing
primitives. Because this design obeyed the Rule of Modularity, pic2plot(1) implementers were able to
split off the GNU pic parsing stage and reimplement the drawing primitives using a modern plotting
library. Their solution has the disadvantage, however, that text in the output is generated with fonts
built into pic2plot that won't match those of troff.



Case Study: fetchmail Run-Control Syntax
See Example 8.5 for an example.

Example 8.5. Synthetic exampleof af et chmai I rc.

# Poll this site first each cycle.
pol | pop. provider.net proto pop3

user "jsmth" with pass "secretl"” is "smth" here

user jones with pass "secret2" is "jjones"” here with options
keep

# Poll this site second, unless Lord Vol denort zaps us first.
pol |l billyw g. hogwarts.comw th proto inap:
user harry potter with pass "floo" is harry potter here

# Poll this site third in the cycle.
# Password will be fetched from~/.netrc
pol | mail host.net with proto inap:

user esr is esr here

This run-control file can be viewed as an imperative minilanguage. Thereisan implied flow of
execution: cycle through thelist of poll commands repeatedly (sleeping for awhile at the end of each
cycle), and for each site entry collect mail for each associated user in sequence. It isfar from being
genera-purpose; al it can do is sequence the program's polling behavior.

Aswith pic(1), one could choose to view this minilanguage as either declarations or avery weak
imperative language, and argue endlessly over the distinction. On the one hand, it has neither
conditionals nor recursion nor loops; in fact, it has no explicit control structures at al. On the other
hand, it does describe actions rather than just relationships, which distinguishes it from a purely
declarative syntax like Glade GUI descriptions.

Run-control minilanguages for complex programs often straddle this border. We're making a point of
this fact because not having explicit control structuresin an imperative minilanguage can be a
tremendous simplification if the problem domain lets you get away with it.

One notable feature of . f et chmai | r ¢ syntax isthe use of optional noise keywords that are
supported simply in order to make the specifications read a bit more like English. The ‘with’
keywords and single occurrence of ‘options’ in the example aren't actually necessary, but they help
make the declarations easier to read at a glance.

The traditional term for this sort of thing is syntactic sugar; the maxim that goes with thisis afamous

quip that “syntactic sugar causes cancer of the semicolon” 188 Indeed, syntactic sugar needs to be
used sparingly lest it obscure more than help.



In Chapter 9 we'll see how data-driven programming helps provide an elegant solution to the problem
of editing fetchmail run-control files through a GUI.

Case Study: awk

The awk minilanguage is an old-school Unix tool, formerly much used in shellscripts. Like md, it's
intended for writing small but expressive programs to transform textual input into textual output.
Versions ship with all Unixes, several in open source; the command info gawk at your Unix shell
prompt is quite likely to take you to on-line documentation.

Programsin awk consist of pattern/action pairs. Each pattern isaregular expression, a concept welll
describe in detail in Chapter 9. When an awk program is run, it steps through each line of the input
file. Each line is checked against every pattern/action pair in order. If the pattern matches the line, the
associated action is performed.

Each action is coded in alanguage resembling a subset of C, with variables and conditionals and
loops and an ontology of typesincluding integers, strings, and (unlike C) di ctionaries[&

The awk action language is Turing-complete, and can read and write files. In some versions it can
open and use network sockets. But awk has primarily seen use as a report generator, especially for
Interpreting and reducing tabular data. It is seldom used standalone, but rather embedded in scripts.
There is an example awk program in the case study on HTML generation included in Chapter 9.

A case study of awk isincluded to point out that it is not amodel for emulation; in fact, since 1990 it
has largely fallen out of use. It has been superseded by new-school scripting languages—notably
Perl, which was explicitly designed to be an awk killer. The reasons are worthy of examination,
because they constitute a bit of a cautionary tale for minilanguage designers.

The awk language was originally designed to be a small, expressive special-purpose language for
report generation. Unfortunately, it turns out to have been designed at a bad spot on the complexity-
vs.-power curve. The action language is noncompact, but the pattern-driven framework it sitsinside
keeps it from being generally applicable — that's the worst of both worlds. And the new-school
scripting languages can do anything awk can; their equivalent programs are usually just as readable,
if not more so.

Awk has also fallen out of use because more modern shells have floating point
arithmetic, associative arrays, RE pattern matching, and substring capabilities, so
that equivalents of small awk scripts can be done without the overhead of
process creation.

-- David Korn

For afew years after the release of Perl in 1987, awk remained competitive simply because it had a
smaller, faster implementation. But as the cost of compute cycles and memory dropped, the economic
reasons for favoring a special-purpose language that was relatively thrifty with both lost their force.



Programmers increasingly chose to do awklike things with Perl or (later) Python, rather than keep

two different scripting languagesin their heads[%] By the year 2000 awk had become little more than
amemory for most old-school Unix hackers, and not a particularly nostalgic one.

Falling costs have changed the tradeoffs in minilanguage design. Restricting your design's
capabilities to buy compactness may still be a good idea, but doing so to economize on machine
resources is a bad one. Machine resources get cheaper over time, but space in programmers heads
only gets more expensive. Modern minilanguages can either be general but noncompact, or
specialized but very compact; specialized but noncompact simply won't compete.

Case Study: PostScript

PostScript is a minilanguage specialized for describing typeset text and graphics to imaging devices.
It isan import into Unix, based on design work done at the legendary Xerox Palo Alto Research
Center along with the earliest laser printers. For years after itsfirst commercial release in 1984, it was
available only as a proprietary product from Adobe, Inc., and was primarily associated with Apple
computers. It was cloned under license terms very close to open-source in 1988, and has since
become the de-facto standard for printer control under Unix. A fully open-source version is shipped

with most most modern Unixes2X A good technical introduction to PostScript is also available[%]

PostScript bears some functional resemblance to troff markup; both are intended to control printers
and other imaging devices, and both are normally generated by programs or macro packages rather
than being hand-written by humans. But where troff requests are a jumped-up set of format-control
codes with some language features tacked on as an afterthought, PostScript was designed from the
ground up as alanguage and is far more expressive and powerful. The main thing that makes
Postscript useful is that algorithmic descriptions of images written in it are far smaller than the
bitmaps they render to, and so take up less storage and communication bandwidth.

PostScript is explicitly Turing-complete, supporting conditionals and loops and recursion and named
procedures. The ontology of typesincludesintegers, reals, strings, and arrays (each element of an
array may be of any type) but no equivalent of structures. Technically, PostScript is a stack-based
language; arguments of PostScript's primitive procedures (operators) are normally popped off a push-
down stack of arguments, and the result(s) are pushed back onto it.

There are about 40 basic operators out of atotal of around 400. The one that does most of the work is
show, which draws a string onto the page. Others set the current font, change the gray level or color,
draw lines or arcs or Bezier curves, fill closed regions, set clipping regions, etc. A PostScript
interpreter is supposed to be able to interpret these commands into bitmaps to be thrown on a display
or print medium.

Other PostScript operators implement arithmetic, control structures, and procedures. These allow
repetitive or stereotyped images (such as text, which is composed of repeated |etterforms) to be
expressed as programs that combine images. Part of the utility of PostScript comes from the fact that
PostScript programs to print text or simple vector graphics are much less bulky than the bitmaps the



text or vectors render to, are device-resolution independent, and travel more quickly over a network
cable or serial line.

Historically, PostScript's stack-based interpretation resembles alanguage called FORTH, originally
designed to control telescope motorsin real time, which was briefly popular in the 1980s. Stack-
based languages are famous for supporting extremely tight, economical coding and infamous for
being difficult to read. PostScript shares both traits.

PostScript is often implemented as firmware built into a printer. The open-source implementation
Ghostscript can translate PostScript to various graphics formats and (weaker) printer-control
languages. Most other software treats PostScript as a final output format, meant to be handed to a
PostScript-capable imaging device but not edited or eyeballed.

PostScript (either in the original or the trivial variant EPSF, with a bounding box declared around it
so it can be embedded in other graphics) isavery well designed example of a special-purpose control
language and deserves careful study asamodel. It is acomponent of other standards such as PDF, the
Portable Document Format.

Case Study: bc and dc

We first examined bc(1) and dc(1) in Chapter 7 as a case study in shellouts. They are examples of
domain-specific minilanguages of the imperative type.

dc isthe oldest language on Unix; it was written on the PDP-7 and ported to the
PDP-11 before Unix [itself] was ported.
-- Ken Thompson

The domain of these two languages is unlimited-precision arithmetic. Other programs can use them to
do such calculations without having to worry about the special techniques needed to do those
calculations.

In fact, the original motivation for dc had nothing to do with providing a general -
purpose interactive calculator, which could have been done with asimple
floating-point program. The motivation was Bell Labs long interest in numerical
anaysis. calculating constants for numerical algorithms, accurately is greatly
aided by being able to work to much higher precision than the algorithm itself
will use. Hence dc's arbitrary-precision arithmetic.

-- Henry Spencer

Like SNG and Glade markup, one of the strengths of both of these languagesis their ssmplicity. Once
you know that dc(1) is areverse-Polish-notation calculator and bc(1) an algebraic-notation calculator,
very little about interactive use of either of these languagesis going to be novel. We'll return to the
importance of the Rule of Least Surprise in interfacesin Chapter 11.



These minilanguages have both conditionals and loops; they are Turing-complete, but have avery
restricted ontology of types including only unlimited-precision integers and strings. This putsthem in
the borderland between interpreted minilanguages and full scripting languages. The programming
features have been designed not to intrude on the common use as a calculator; indeed, most dc/bc
users are probably unaware of them.

Normally, dc/bc are used conversationally, but their capacity to support libraries of user-defined
procedures gives them an additional kind of utility — programmability. Thisis actually the most
important advantage of imperative minilanguages, one that we observed in the case study of the
Documenter's Workbench tools to be very powerful whether or not a program's normal modeis
conversational; you can use them to write high-level programs that embody task-specific intelligence.

Because the interface of dc/bc is so simple (send aline containing an expression, get back aline
containing avalue) other programs and scripts can easily get access to al these capabilities by calling
these programs as slave processes. Example 8.6 is one famous example, an implementation of the
Rivest-Shamir-Adelman public-key cipher in Perl that was widely published in signature blocks and
on T-shirts as a protest against U.S. export retrictions on cryptography, c. 1995; it shells out to dc to
do the unlimited-precision arithmetic required.

Example 8.6. RSA implementation using dc.

print pack"C",split/\D+/, echo "16ill*o\U@ $/ =%$z; [ (pop, pop, unpack
"H*, <>)]}\VEsMsKsSNO[ | N* 11 K[ d2%5a2/ dO<X+d* | M_.a™* | NY®] ds Xx++\
| M N dsMD<J] dsJxp" | dc”

Case Study: Emacs Lisp

Rather than merely being run as a lave process to accomplish specific tasks, a specia-purpose
interpreted language can become the core of an entire architecture; we'll consider the advantages and
disadvantages of this approach in Chapter 13. troff requests were an early example; today, the Emacs
editor is one of the best-known and most powerful modern ones. It's built around a dialect of Lisp
with primitives for both describing actions on editing buffers and controlling slave processes.

The fact that Emacsis built around a powerful language for describing editing actions or front ends
for other programs means that it can be used for many other things besides ordinary editing. Welll
examine the applications of Emacs's task-specific intelligence for day-to-day program devel opment
(compilation, debugging, version control) in Chapter 15. Emacs ‘modes’ are user-defined libraries —
programs written in Emacs Lisp that specialize the editor for a particular job — usually, but not
necessarily, one related to editing.

Thus there are specialized modes that know the syntax of alarge number of programming languages,
and of markup languages like SGML, XML, and HTML. But many people also use Emacs modesto
send and receive email (these use Unix system mail utilities as slaves) or Usenet news. Emacs can
browse the web, or act as afront-end for various chat programs. There is aso a calendaring package,
Emacs's own calculator program, and even afairly wide selection of games written as Emacs Lisp



modes (including a descendant of the famous ELIZA program that simulates a Rogersian
psychiatrist).[>3]

Case Study: JavaScript

JavaScript is an open-source language designed to be embedded in C programs. Though it isalso
embedded in web servers, its original and best-known manifestation is client-side JavaScript, which
allows you to embed executable code in Web pages to be run by any JavaScript-capable browser.
That isthe version we will survey here.

JavaScript is afully Turing-complete interpreted language with integers, real numbers, booleans,
strings, and lightweight dictionary-based objects resembling those of Python. Values are typed, but
variables can hold any type; conversions between types are automatic in many contexts. Syntactically
JavaScript resembles Java with some influence from Perl, and features Perl-like regular expressions.

Despite all these features, client-side JavaScript is not quite a general-purpose language. Its
capabilities are severely restricted to prevent attacks on the browser user through Web pages
containing JavaScript code. It can accept input from the user and generate or modify Web pages, but
it cannot directly alter the contents of disk files and cannot open its own network connections.

Over time, the JavaScript language has become more general and less bound to its client-side
environment. Thisis something that can be expected to happen to any successful specialized
language as its possibilities unfold in the minds of developers and users. Client JavaScript now
Interacts with its environment by reading and writing values in asingle special object called the
browser DOM (Document Object Model). The language still has some legacy APIsto the browser
that don't go through the DOM, but these are deprecated, not present in the ECMA-262 standard for
JavaScript, and may not be supported in future versions.

The standard reference for JavaScript is Javascript: The Definitive Guide [FlanaganJavaScript].

Source code is downloadable.[*] JavaScri pt makes an interesting study for two reasons. First, it's
about as close to being a general -purpose language as one can get without actually being there.
Second, the binding between client-side JavaScript and its browser environment viaa single DOM
object iswell designed, and could serve as a model for other embedding situations.

811 The POSIX standard for regular expressions introduces some symbolic rangeslike| [ :
| ower;;]] and[[:digit:]],andsome specific tools have extrawildcards not covered here,
but these will suffice to interpret most regexps.

2] For non-Unix programmers, an X toolkit is agraphics library that supplies GUI widgets (like
labels, buttons, and pull-down menus) to the programs that link to it. Under most other graphical
operating systems, the OS supplies one toolkit that everyone uses. Unix and X support multiple



toolkits; thisis part of the separation of policy from mechanism that we called out as a design goal of
X in Chapter 1. GTK and Qt are the two most popular open-source X toolkits.

(83 Whether or not “macro expansion” should be spelled “macroexpansion” is a matter for some
dispute. The latter is found mainly among Lisp programmers.

(4 It is not clear that XSLT could be any simpler and still do itsjob, however, so we cannot
characterize it as abad design.

89 x sL Concepts and Practical Use.

89 hitp://www.netlib.org/

7 1tisaso quite traditional for Unix books that describe pic(1) to include their own illustrations as
coding examples,

8 The line is owed to Alan Perl IS, who did some of the pioneering work in software modularity
around 1970. The semicolon in question was the statement separator or terminator in various Algol-
descended languages, including Pascal and C.

) For those who have never programmed in a modern scripting language, adictionary is alookup
table of key-to-value associations, often implemented through a hash table. C programmers spend a
lot of their coding time implementing dictionaries in various elaborate ways.

[ | was at one time an awk wi zard, but | had to be reminded by someone else that the language was
applicable to the HTML-generation problem where this book's only awk example occurs.

[%Y Thereis a GhostScri pt Project site.

[99 A First Guide To PostScript.

(%3] One of the silliest things you can do with a modern Unix machine is run the Eliza mode of Emacs
against random quotes from Zippy the Pinhead. M -x psychoanalyze-pinhead; type control-G when
you've had enough.

(%41 Open-source JavaScript implementations in C and Java are available.
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Designing Minilanguages

When is designing a minilanguage appropriate? We've observed that minilanguages offer away to
push problem specifications to a higher level, and seen how this operatesin several case studies. The
flip side of this observation is that a minilanguage is likely to be a good approach whenever the
domain primitives in your application area are simple and stereotyped, but the ways in which users
are likely to want to apply them are fluid and varying.

For some related ideas, find a description of the Alternate Hard And Soft Layers and Scripted
Components design patterns.

An interesting survey of design styles and techniques in minilanguages is Notable Design Patterns
for Domain-Specific Languages [Spinellig].

Choosing the Right Complexity Level

The first important thing to bear in mind when designing a minilanguage is, as usual, to keep it as
simple as possible. The taxonomy diagram we used to organize the case studies implies a hierarchy of
complexity; you want to keep your design as far toward the left-hand edge as possible. If you can get
away with designing a structured data file rather than a minilanguage that is going to modify external
datawhen it'sinterpreted, by all means do so.

One very pragmatic reason to stick with structured data rather than a minilanguage isthat in a
networked world, embedded minilanguage facilities are subject to abuses that can be inconvenient or
even dangerous. JavaScript is a prime example in the ‘inconvenient’ category; its designers didn't
anticipate that it would be used for pop-up advertisements so obnoxious as to create a demand for
browser features that suppress JavaScript interpretation.

Microsoft Word macro viruses show how this sort of thing can become actively dangerous, a security
hole that costs billions of dollarsin downtime and lost productivity annually. It isinstructive to note

that despite the existence of at least twenty million Unix users worldwidel®> there has never been
any Unix equivalent of Windows's frequent macro-virus outbreaks. There are a number of reasons for
this, including the fundamentally better security design of Unix; but at least one is the fact that Unix

mail agents do not default to executing live content in any document that the user vi ews[%]

If there is any way that your application's users might end up running programs from untrusted
sources, risky features of your application minilanguage might end up having to be suppressed.
Languages like Java and JavaScript are explicitly sandboxed—that is, they have limited accessto
their environment not merely to simplify their design but to try to prevent potentially destructive
operations by buggy or malicious code.



On the other hand, alot of bad designs have been botched by designers who failed to face up to the
fact that they really needed a minilanguage rather than a data-file format. Too often, language-like
features get pasted on as an afterthought. The two most common symptoms of this problem are weak,
ad-hoc control structures and poor or nonexistent facilities for declaring procedures.

It's risky to design minilanguages that are only accidentally Turing-complete. If you do this the odds
are good that, sometime in the future, some clever fellow is going to think he needs to press your
language into doing loops and conditionals for him. Because these are only available in an obfuscated
way, helll produce obfuscated code. The results may be serviceable in the short term, but are likely to
be a nightmare for those who come after him.

Minilanguage design is both powerful and esthetically rewarding, but it's also full of similar traps.
There are kinds of design in which it is appropriate to take the bottom-up approach of pasting
together a bunch of low-level services and worrying about their organization after you have explored
the problem domain for awhile. One of the virtues of minilanguages is that they can help you get a
good design out of bottom-up programming by alowing you to defer some top-down decisions into
the control flow of programsin your minilanguage. But if you take a bottom-up approach to the
minilanguage design itself, you are likely to end up with an ugly syntax reflecting a weak language
and a poorly-thought-out implementation.

There are many places in a minilanguage design where small choices make alarge difference in the
useability and ease of the tool:

As alanguage designer, it isagood principle to consider the alternatives to
giving an error message. When there is true ambiguity in the intent of the
programmer an error message is appropriate, but in many casesthe intent is
clear, and making the language silently do the right thing is agreat boon. A good
example is C accommodating an extra comma at the end of an array initializer
list, which makes both editing and machine generation of array initializers much
easier. Anti-examples are the pickiness of various HTML readers, especialy
their habit of silently discarding parts of your document because of trivial nesting
errors.

-- Steve Johnson

On thisissue, as elsewhere, there is no substitute for good taste and engineering judgment. If you're
going to design a minilanguage, don't do it halfway. Declarative minilanguages should have a clear,
consistent language-like syntax designed to be readable by humans. Imperative ones should add a full
range of control structures adapted from language models you can expect your usersto be familiar
with. Think about the language as alanguage; ask yourself esthetic questions like “Will this be
comfortable to program in?” and even “Will it be pleasant to look at?’ Here, as elsewhere in software
design, David Gelernter's maxim is apt: beauty is the ultimate defense against complexity.

Extending and Embedding Languages



One fundamentally important question is whether you can implement your minilanguage by
extending or embedding an existing scripting language. Thisis often the right way to go for an
Imperative minilanguage, but much less appropriate for a declarative one.

Sometimesit's possible to write your imperative language simply by coding service functionsin an
interpreted language, which wel'll call the *host’ language for purposes of this discussion. Y our
minilanguage programs are then just scripts that load your service library and use the host language's
control structures and other facilities as aframework. Every facility the host language suppliesis one
you don't have to write.

Thisisthe easiest way to write a minilanguage. Old-school Lisp programmers (including me) love
this technique and use it heavily. It underlies the design of the Emacs editor, and has been
rediscovered in the new-school scripting languages like Tcl, Python, and Perl. There are drawbacks to
it, however.

Y our host language may be unable to interface to a code library that you need. Or, internally, its
ontology of datatypes may be inadequate for the kind of computation you need to do. Or, after
measuring the performance of a prototype, you discover that it's too slow. When any of these things
happen, your solution is usually going to involve coding in C (or C++) and integrating the results into
your minilanguage.

The option of extending a scripting language with C code, or of embedding a scripting languagein a
C program, relies on the existence of scripting languages designed for it. Y ou extend a scripting
language by telling it to dynamically load a C library or module in such away that the C entry points
become visible as functionsin the extended language. Y ou embed a scripting languageinaC
program by sending commands to an instance of the interpreter and receiving the results back as
valuesin C.

Both technigques a'so rely on the ability to move data between the type ontology of C and the type
ontology of your scripting language. Some scripting languages are designed from the ground up to
support this. One such is Tcl, which we'll cover in Chapter 14. Another is Guile, an open-source
dialect of the Lisp variant Scheme. Guile is shipped as alibrary and specifically designed to be
embedded in C programs.

It is possible (though in 2003 still rather painful and difficult) to extend or embed Perl. It isvery easy
to extend Python and only slightly more difficult to embed it; C extension is especially heavily used
in the Python world. Java has an interface to call ‘ native methods’ in C, though the practiceis
explicitly discouraged because it tends to break portability. Most versions of shell are not designed
for embeddability and extension, but the Korn shell (ksh93 and later versions) is a notable exception.

There are lots of bad reasons not to piggyback your imperative minilanguage on an existing scripting
language. One of the few good onesis that you actually want to implement your own custom
grammar for error checking. If that's the case, then see the advice about yacc and lex below.

Writing a Custom Grammar



For declarative minilanguages, one major question is whether or not you should use XML as a base
syntax and specify your grammar as an XML document type. This may well be the right thing for
elaborately structured declarative minilanguages, but the same caveats we noted in Chapter 5 about

the design of data-file formats apply — XML might be overkill. If you don't use XML, follow the
Rule of Least Surprise by supporting the Unix conventions we described for data files (ssmple token-
oriented syntax, supporting C backslash conventions, etc.).

If you do need a custom grammar, yacc and lex (or their local equivalent in the language you're
using) should probably be your best friends, unless the grammar of your language is so simple that
hand-coding a recursive-descent parser istrivial. Even then, yacc may give you better error recovery,
and ayacc specification will be easier to modify as the language syntax evolves. See Chapter 9 for a

look at the yacc- and lex-derived tools available in different implementation languages.

Even if you decide you must implement your own syntax, consider what mileage you can get from
reusing existing tools. If you need a macro facility, consider whether preprocessing with m4(1) might
be the right answer — but consider the cautions in the next section first.

Macros — Beware!

Macro expansion facilities were a favored tactic for language designers in early Unix; the C language
has one, of course, and we have seen them show up in some of the more complex special-purpose
minilanguages like pic(1). The m4 preprocessor provides a generic tool for implementing macro-
expanding preprocessors.

Macro expansion is easy to specify and implement, and you can do alot of cute tricks with it. Those
early designers appear to have been influenced by experience with assemblers, in which macro
facilities were often the only device available for structuring programs.

The strength of macro expansion is that it knows nothing about the underlying syntax of the base
language, and can be used to extend that syntax. Unfortunately, this power isvery easily abused to
produce code that is opaque, surprising, and a fertile source of hard-to-characterize bugs.

In C, the classic example of this sort of problem is amacro such asthis:
#defi ne max(x, Yy) X >y ? X .y

There are at |east two problems with this macro. Oneisthat it can produce surprising resultsif either
of the argumentsis an expression including an operator of lower precedence than > or ?: . Consider
the expressonmax(a = b, ++c). If theprogrammer hasforgotten that max isamacro, he will
be expecting the assignment a = b and the preincrement operation on ¢ to be executed before the
resulting values are passed as arguments to nax.

But that's not what will happen. Instead, the preprocessor will expand thisexpressontoa = b > +



+Cc ? a
+Cc ? a

b : ++c, whichthe C compiler's precedencerules makeitinterpretasa = (b > +
b : ++c). Theeffect will beto assignto a!

This sort of bad interaction can be headed off by coding the macro definition more defensively.

#def i ne max(x, V) ((x) > (y) 2 (x) : (y))

With this definition, the expansionwouldbe((a = b) > (++c) ? (a = b) : (++c)).
This solves one problem — but notice that ¢ may be incremented twice! There are subtler versions of
this trap, such as passing the macro afunction-call with side effects.

In general, interactions between macros and expressions with side effects can lead to unfortunate
results that are hard to diagnose. C's macro processor is a deliberately lightweight and simple one;
more powerful ones can actually get you in worse trouble.

The TeX formatting language (see Chapter 18) well illustrates the general problem. TeXis
intentionally Turing-complete (it has conditionals, loops, and recursion), but while it can be made to
do amazing things, TeX code tends to be unreadable and painful to debug. The sources for LaTeX, the
the most widely used TeX macro package, are an instructive example: they'rein very good TeX style,
but even so are extremely difficult to follow.

A minor problem, compared to this one, is that macro expansion tends to screw up error diagnostics.
The base language processor generates its error reports relative to the macro expanded text, not the
original the programmer islooking at. If the relationship between the two has been obfuscated by
macro expansion, the emitted diagnostic can be very difficult to associate with the actual location of
the error.

Thisis especialy a problem with preprocessors and macros that can have multiline expansions,
conditionally include or exclude text, or otherwise change line numbers in the expanded text.

Macro expansion stages that are built into alanguage can do their own compensation, fiddling line
numbers to refer back to the preexpanded text. The macro facility in pic(1) doesthis, for example.
This problem is more difficult to solve when the macro expansion is done by a preprocessor.

The C preprocessor addresses this problem by emitting #1 i ne directives whenever it does an
inclusion or multiline expansion. The C compiler is expected to interpret these and adjust the line
numbersin its error reports accordingly. Unfortunately, m4 has no such facility.

These are reasons to use macro expansion with extreme caution. One of the long-term lessons of the
Unix experience is that macros tend to create more problems than they solve. Modern language and
minilanguage designs have moved away from them.

Language or Application Protocol?



Another important question you need to ask is whether your minilanguage engine will be called
interactively by other programs, as a slave process. If so, your design should probably look less like a
conversational language for human interaction and more like the kind of application protocols we
looked at in Chapter 5.

The main difference is how carefully marked the boundaries of transactions are. Human beings are
good at spotting where conversational output from a CLI ends, and where the prompt for the next
input is. They can use context to tell what's significant and what should be ignored. Computer
programs have much more trouble with this. Without either unambiguous end markers on output or
advance knowledge of the length of the output, they can't tell when to stop reading.

Even worse iswhen a program's input is buffered (often inadvertently, as by
stdio). A program that stops overtly reading at the right place can nonethel ess eat
past it.

--Doug Mcllroy

Programs in which master processes are trying to do interactive things with slaved minilanguages that
are not carefully designed around this problem are prone to deadlock as the master and slave fall out
of synchronization (a problem we first noted in Chapter 7).

There are workarounds for driving minilanguages that are not so carefully designed. The prototype
for most of them isthe Tcl expect package. This package assists conversation with CLIs. It's built
around the following operation: read from slave until either a given regular-expression patternis
matched or a specified timeout elapses. With this (and, of course, a send-to-slave operation) it's often
possible to construct master programs to do reliable dialogues with slave processes even when the
latter have not been tailored for the role.

Workalikes of the expect package in other languages are available; a Web search for the name of your
favorite language with the added keywords “Tcl expect” is quite likely to turn up something useful.
As aminilanguage designer, however, you would be unwise to assume that all your users will be
expect gurus. Even if they are, thisis an extra glue layer and a place for things to go wrong.

Be aware of thisissue when designing your minilanguage. It may be a good ideato add an option that
changes its conversationa behavior to make it respond more like an application protocol, with
unambiguous end-of-output delimiters and an analog of byte stuffing.

(%] 20M is a conservative estimate based on mid-2003 figures from the Linux Counter and elsewhere.
%9 Kmail, which we looked at in Chapter 6, won't even chase off-site linksin HTML for this reason.
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The programmer at wit'send ... can often do best by disentangling himself from his code, rearing
back, and contemplating his data. Representation is the essence of programming.

-- Fred Brooks The Mythical Man-Month, Anniversary Edition (1975-1995), p. 103

In Chapter 1 we observed that human beings are better at visualizing data than they are at reasoning

about control flow. We recapitulate: To see this, compare the expressiveness and explanatory power
of adiagram of afifty-node pointer tree with aflowchart of afifty-line program. Or (better) of an
array initializer expressing a conversion table with an equivaent switch statement. The differencein

transparency and clarity is dramatic.[’]

Data is more tractable than program logic. That's true whether the datais an ordinary table, a
declarative markup language, atemplating system, or a set of macros that will expand to program
logic. It's good practice to move as much of the complexity in your design as possible away from
procedural code and into data, and good practice to pick data representations that are convenient for
humans to maintain and manipulate. Trand ating those representations into forms that are convenient
for machines to process is another job for machines, not for humans.

Another important advantage of higher-level, more declarative notationsis that
they lend themselves better to compile-time checking. Procedural notations
inherently have complex runtime behavior which is difficult to analyze at
compile time. Declarative notations give the implementation much more
leverage for finding mistakes, by permitting much more thorough understanding
of the intended behavior.

-- Henry Spencer



These insights ground in theory a set of practices that have always been an important part of the Unix
programmer's toolkit — very high-level languages, data-driven programming, code generators, and
domain-specific minilanguages. What unifies these is that they are all ways of lifting the generation
of code up some levels, so that specifications can be smaller. We've previously noted that defect
densities tend to be nearly constant across programming languages; all these practices mean that
whatever malign forces generate our bugs will get fewer lines to wreak their havoc on.

In Chapter 8 we discussed the uses of domain-specific minilanguages. In Chapter 14 we'll make the
argument for very-high-level languages. In this chapter we'll look at some design studiesin data-
driven programming and a few examples of ad-hoc code generation; we'll look at some code-
generation toolsin Chapter 15. As with minilanguages, these methods can enable you to drastically
cut the line count of your programs, and correspondingly lower debugging time and maintenance
costs.

(] For further development of this point see [Bentley].
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Data-Driven Programming

When doing data-driven programming, one clearly distinguishes code from the data structures on
which it acts, and designs both so that one can make changes to the logic of the program by editing
not the code but the data structure.,

Data-driven programming is sometimes confused with object orientation, another style in which data
organization is supposed to be central. There are at least two differences. Oneisthat in data-driven
programming, the data is not merely the state of some object, but actually defines the control flow of
the program. Where the primary concern in OO is encapsulation, the primary concern in data-driven
programming iswriting as little fixed code as possible. Unix has a stronger tradition of data-driven
programming than of OO.

Programming data-driven style is also sometimes confused with writing state machines. It isin fact
possible to express the logic of a state machine as atable or data structure, but hand-coded state
machines are usually rigid blocks of code that are far harder to modify than atable.

An important rule when doing any kind of code generation or data-driven programming isthis:
always push problems upstream. Don't hack the generated code or any intermediate representations
by hand — instead, think of away to improve or replace your translation tool. Otherwise you're likely
to find that hand-patching bits which should have been generated correctly by machine will have
turned into an infinite time sink.

At the upper end of its complexity scale, data-driven programming merges into writing interpreters
for p-code or simple minilanguages of the kind we surveyed in Chapter 8. At other edges, it merges
into code generation and state-machine programming. The distinctions are not actually that
important; the important part is moving program logic away from hardwired control structures and
into data.

Case Study: ascii

| maintain a program called ascii, avery simple little utility that tries to interpret its command-line
arguments as names of ASCII (American Standard Code for Information Interchange) characters and
report all the equivalent names. Code and documentation for the tool are available from the project

page. Hereis an illustrative screenshot:

esr@nark: ~/ WW witings/taoup$ ascii 10

ASCI| 1/0 is decinmal 016, hex 10, octal 020, bits 00010000: called
AP, DLE

O ficial nane: Data Link Escape



ASCI| 0/10 is decinal 010, hex Oa, octal 012, bits 00001010: called
NJ, LF, NL

O ficial name: Line Feed

C escape: '\n’

G her names: New i ne

ASCI1 0/8 is decinal 008, hex 08, octal 010, bits 00001000: called
"H, BS

O ficial nane: Backspace

C escape: '\b’

O her names:

ASCI| 0/2 is decimal 002, hex 02, octal 002, bits 00000010: call ed
AB, STX
Oficial name: Start of Text

One indication that this program was a good ideais the fact that it has an unexpected use — as a
quick CLI aid to converting between decimal, hex, octal, and binary representations of bytes.

The main logic of this program could have been coded as a 128-branch case statement. This would,
however, have made the code bulky and difficult to maintain. It would also have tangled parts that
change relatively rapidly (like the list of slang names for characters) with parts that change slowly or
not at all (like the official names), putting them both in the same legend string and making errors
during editing much more likely to touch data that ought to be stable.

Instead, we apply data-driven programming. All the character name strings live in atable structure
that is quite abit larger than any of the functionsin the code (indeed, counted in linesit islarger than
any three of the functionsin the program). The code merely navigates the table and does |ow-level
tasks like radix conversions. The initializer actually livesin thefile nanet abl e. h, whichis
generated in away we'll describe later in this chapter.

This organization makes it easy to add new character names, change existing ones, or delete old
names by ssimply editing the table, without disturbing the code.

(The way the program is built is good Unix style, but the output format is questionable. It's hard to
see how the output could usefully become the input of any other program, so it does not play well
with others.)

Case Study: Statistical Spam Filtering

One interesting case of data-driven programming is statistical learning algorithms for detecting spam
(unsolicited bulk email). A whole class of mail filter programs (those easily findable by Web search
include popfile, spambayes, and bogofilter) use a database of word correlations to replace the
elaborate pattern-matching conditional logic of pattern-matching spam filters.



Programs like these became common on the Internet very rapidly following Paul Graham's landmark
paper A Plan for Spam [Graham] in 2002. While the explosion was triggered by the increasing cost of
the pattern-matching arms race, the statistical-filtering idea was adopted first and fastest by Unix
shops. In part, this was certainly because aimost all the Internet service providers (who are most
burdened by spam, and thus had most incentive to adopt effective new techniques) are Unix shops —
but undoubtedly the harmony with some traditional themesin Unix software design helped as well.

Conventional spam filters require that a system administrator, or some other responsible party,
maintain information on patterns of text found in spam — names of sites that emit nothing but spam,
come-on phrases often used by pornography sites or Internet scam artists, and the like. In his paper,
Graham noted accurately that computer programmers like the idea of pattern-matching filters, and
sometimes have difficulty seeing past that approach, because it offers them so many opportunities to
be clever.

Statistical spam filters, on the other hand, work by collecting feedback about what the user judges to
be spam versus nonspam. That feedback is processed into databases of statistical correlation
coefficients or weights connecting words or phrases to the user's spam/nonspam classification. The
most popular algorithms use minor variants of Bayes's Theorem on conditional probabilities, but
other techniques (including various sorts of polynomial hashing) are also employed.

In all these programs, the correlation check is arelatively trivial mathematical formula. The weights
fed into the formula aong with the message being checked serve as implicit control structure for the
filtering algorithm.

The problem with conventional pattern-matching spam filtersisthat they are brittle. Spammers are
constantly gaming against the filter-rule databases, forcing the filter maintainersto constantly
reprogram their filters to stay ahead in the arms race. Statistical spam filters generate their own filter
rules from the user feedback.

In fact, experience with statistical filters seems to show that the particular learning algorithm used is
far less important than the quality of the spam and nonspam data sets from which the learning
algorithm computes its weights. So the results of statistical filtersreally are driven more by the shape
of the data than by the algorithm.

A Plan for Spam was something of abombshell because its author argued convincingly that a ssimple,
even crude, statistical approach gave alower rate of nonspam being erroneoudly classified as spam
than either elaborate pattern-matching techniques or the human eyeball could manage. For Unix
programmers, seeing past the lure of clever pattern-matching was far easier than in other
programming cultures without as strong an attachment to “Keep It Simple, Stupid!”

Case Study: Metaclass Hacking in fetchmailconf

The fetchmailconf(1) dotfile configurator shipped with fetchmail(1) contains an instructive example
of advanced data-driven programming in avery high-level, object-oriented language.



In October 1997 a series of questions on the fetchmail-friends mailing list made it clear that end-users
were having increasing troubles generating configuration files for fetchmail. The file uses a simple,
classically-Unixy free-format syntax, but can become forbiddingly complicated when a user has
POP3 and IMAP accounts at multiple sites. See Example 9.1 for a somewhat simplified version of

the fetchmail author's configuration file.

Example 9.1. Example of fetchmailrc syntax.

set postmaster "esr
set daenon 300
poll imap.ccil.org with proto | MAP and options no dns

aka snark.thyrsus.com| ocke.ccil.org ccil.org
user esr there is esr here
options fetchall dropstatus warnings 3600

pol |l imap. netaxs.comw th proto | VAP
user "esr" there is esr here options dropstatus warnings 3600

The design objective of fetchmailconf was to completely hide the control file syntax behind a
fashionable, ergonomically-correct GUI replete with selection buttons, slider bars and fill-out forms.
But the beta design had a problem: it could easily generate configuration files from the user's GUI
actions, but could not read and edit existing ones.

The parser for fetchmail's configuration file syntax is rather elaborate. It's actually written in yacc and
lex, the two classic Unix tools for generating language-parsing code in C. For fetchmailconf to be
able to edit existing configuration files, it at first appeared that it would be necessary to replicate that
elaborate parser in fetchmailconf's implementation language — Python.

This tactic seemed doomed. Even leaving aside the amount of duplicative work implied, itis
notoriously hard to be certain that two parsers in two different languages accept the same grammar.
Keeping them synchronized as the configuration language evolved bid fair to be a maintenance
nightmare. It would have violated the SPOT rule we discussed in Chapter 4 wholesale.

This problem stumped me for awhile. The insight that cracked it was that fetchmailconf could use
fetchmail's own parser as afilter! | added a- - conf i gdunp option to fetchmail that would parse .
f et chmai | r ¢ and dump the result to standard output in the format of a Python initializer. For the
file above, the result would look roughly like Example 9.2 (to save space, some data not relevant to

the example is omitted).
Example 9.2. Python structure dump of a fetchmail configuration.

fetchmailrc = {
"pol | _interval': 300,



"l ogfile": None,
"post master":"esr",
" bouncenai | ' : TRUE,
“properties": None,
“invisible' :FALSE,
' sysl og' : FALSE,
# List of server entries begins here
‘servers': |
# Entry for site "imap.ccil.org" begins:

{
“pol | nane":"i map. ccil.org",
‘active': TRUE,
"vi a": None,
“protocol ": "1 NAP",
"port': O,
"tinmeout' : 300,
‘dns' : FALSE,
"aka":["snark. thyrsus.cont, "l ocke.ccil.org","ccil.org"],
‘users': |
{
"renote":"esr",
"password”: " masked _one",
‘|l ocal nanes' :["esr"],
‘fetchal |': TRUE,
' keep' : FALSE,
"flush': FALSE,
"nmda": None,
‘limt':0,
‘war ni ngs' : 3600,
}
, ]
}
# Entry for site "imap.netaxs.com begins:
{
“pol | nane":"i map. net axs. cont',
‘active': TRUE,
"vi a": None,
"protocol ": "1 NAP",
‘port': O,
"tinmeout' : 300,
‘dns' : TRUE,
"aka": None,
‘users': |
{

"renote":"esr",



"password”: " masked two",
‘|l ocal nanes' : ["esr"],
‘fetchal | ' : FALSE,

' keep' : FALSE,

"flush': FALSE,

"nmda": None,

"limt':O0,

‘war ni ngs' : 3600,

: ]

}

The major hurdle had been leapt. The Python interpreter could then evaluate the fetchmail - -
conf i gdunp output and read the configuration available to fetchmailconf as the value of the
variable ‘fetchmail’.

But thiswasn't quite the last obstacle in the race. What was really needed wasn't just for
fetchmailconf to have the existing configuration, but to turn it into alinked tree of live objects. There
would be three kinds of objectsin thistree: Conf i gur at i on (the top-level object representing the
entire configuration), Si t e (representing one of the serversto be polled), and User (representing
user data attached to a site). The example file describes three site objects, each with one user object
attached to it.

The three object classes aready existed in fetchmailconf. Each had a method that caused it to pop up
aGUI edit panel to modify its instance data. The last remaining problem was to somehow transform
the static data in this Python initializer into live objects.

| considered writing aglue layer that would explicitly know about the structure of all three classes
and use that knowledge to grovel through the initializer creating matching objects, but rejected that
idea because new class members were likely to be added over time as the configuration language
grew new features. If the object-creation code were written in the obvious way, it would once again
be fragile and tend to fall out of synchronization when either the class definitions or the initializer
structure dumped by the - - conf i gdunp report generator changed. Again, arecipe for endless bugs.

The better way would be data-driven programming — code that would analyze the shape and
members of the initializer, query the class definitions themsel ves about their members, and then
impedance-match the two sets.

Lisp and Java programmers call this introspection; in some other object-oriented languages it's called
metaclass hacking and is generally considered fearsomely esoteric, deep black magic. Most object-
oriented languages don't support it at al; in those that do (Perl and Java among them), it tendsto be a
complicated and fragile undertaking. But Python's facilities for introspection and metaclass hacking



are unusually accessible.

See Example 9.3 for the solution code, from near line 1895 of the 1.43 version.

Example 9.3. copy_i nst ance metaclass code.

def copy_instance(toclass, frondict):
# Make a class object of given type froma conformant dictionary.
class _sig toclass. dict_.keys(); class _sig.sort()
di ct _keys = frondict. keys(); dict_keys.sort()
comon = set _intersection(class_sig, dict_keys)
i f 'typemap’ in class_sig:
cl ass_sig.renove(' typenap')

if tuple(class_sig) != tuple(dict_keys):
print "Conformability error”
# print "Cass signature: " + "class_sig
# print "Dictionary keys: " + “dict_keys’

print "Not matched in class signature: "+ \
"set _diff(class_sig, common)

print "Not matched in dictionary keys: "+ \
“set _diff(dict_keys, common)

sys.exit(1)
el se:
for x in dict_keys:
setattr(toclass, x, fromdict[x])

Most of this code is error-checking against the possibility that the class members and - -

conf i gdunp report generation have drifted out of synchronization. It ensuresthat if the code
breaks, the breakage will be detected early — an implementation of the Rule of Repair. The heart of
this function is the last two lines, which set attributes in the class from corresponding membersin the
dictionary. They're equivalent to this:

def copy_instance(toclass, frondict):
for x in frondict. keys():
setattr(toclass, x, frondict[x])

When your codeisthissimple, it isfar more likely to be right. See Example 9.4 for the code that calls
it.

Example 9.4. Calling context for copy_i nst ance.

# The tricky part - initializing objects fromthe
“configuration'



# global. "~ Configuration' is the top |evel of the object tree
# we're going to mung
Configuration = Control s()
copy_instance(Configuration, configuration)
Configuration.servers = [];
for server in configuration['servers']:
Newsite = Server ()
copy_instance(Newsite, server)
Confi guration. servers. append( Newsi te)
Newsite.users = [];
for user in server['users']:
Newuser = User ()
copy_i nstance( Newuser, user)
Newsi t e. users. append( Newuser)

The key point to extract from this code is that it traverses the three levels of the initializer
(configuration/server/user), instantiating the correct objects at each level into lists contained in the
next object up. Because copy_i nst ance isdata-driven and completely generic, it can be used on
all three levelsfor three different object types.

Thisisanew-school sort of example; Python was not even invented until 1990. But it reflects themes
that go back to 1969 in the Unix tradition. If meditating on Unix programming as practiced by his
predecessors had not taught me constructive laziness — insisting on reuse, and refusing to write
duplicative glue code in accordance with the SPOT rule—I might have rushed into coding a parser in
Python. The first key insight that fetchmail itself could be made into fetchmailconf's configuration
parser might never have happened.

The second insight (that copy i nst ance could be generic) proceeded from the Unix tradition of
looking assiduously for ways to avoid hand-hacking. But more specifically, Unix programmers are
very used to writing parser specifications to generate parsers for processing language-like markups;
from there it was a short step to believing that the rest of the job could be done by some kind of
generic tree-walk of the configuration structure. Two separate stages of data-driven programming,
one building on the other, were needed to solve the design problem cleanly.

Insights like this can be extraordinarily powerful. The code we have been looking at was written in
about ninety minutes, worked the first time it was run, and has been stable in the years since (the only
time it has ever broken iswhen it threw an exception in the presence of genuine version skew). It's
less than forty lines and beautifully simple. There is no way that the naive approach of building an
entire second parser could possibly have produced this kind of maintainability, reliability or
compactness. Reuse, simplification, generalization, orthogonality: thisisthe Zen of Unix in action.

In Chapter 10, we'll examine the run-control syntax of fetchmail as an example of the standard shell-
like metaformat for run-control files. In Chapter 14 we'll use fetchmailconf as an example of Python's
strength in rapidly building GUIs.
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Ad-hoc Code Generation

Unix comes equipped with some powerful special-purpose code generators for purposes like building
lexical analyzers (tokenizers) and parsers; we'll survey these in Chapter 15. But there are much
simpler, lighter-weight sorts of code generation we can use to make life easier without having to
know any compiler theory or write (error-prone) procedural logic.

Here are a couple of simple case studies to illustrate this point:
Case Study: Generating Code for the ascii Displays
Called without arguments, ascii generates a usage screen that looks like Example 9.5.

Example 9.5. ascii usage screen.

Usage: ascii [-dxohv] [-t] [char-alias...]

-t = one-line output -d = Decinmal table -0 = octal table -x =
hex table

-h = This help screen -v = version information
Prints all aliases of an ASCI| character. Args may be chars, C\-
escapes,
Engl i sh nanes, ”"-escapes, ASCI| mmenonics, or nunerics in decinal/
oct al / hex.

Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec
Hex Dec Hex
O 00 NUL 16 10 DLE 32 20 48 30 0 64 40 @ 80 50 P 96 60

112 70 p
101 SOH 17 11 DC1 33 21! 49311 6541 A 8151 Q 97 61

a 113 71 g
2 02 STX 18 12 DC2 34 22" 50322 66 42 B 82 52 R 98 62

b 114 72 r

3 03 ETX 19 13 DC3 35 23 # 51 33 3 67 43 C 83 53 S 99 63
c 115 73 s

4 04 EOT 20 14 DCA 36 24 $ 52 34 4 68 44D 84 54 T 100 64
d 116 74 t

5 05 ENQ 21 15 NAK 37 25 % 53 35 5 69 45 E 85 55 U 101 65
e 117 75 u

6 06 ACK 22 16 SYN 38 26 & 54 36 6 70 46 F 86 56 V 102 66
f 118 76 v

7 07 BEL 23 17 ETB 39 27 ' 55 37 7 71 47 G 87 57 W 103 67



g 119 77 w

8 08 BS 24 18 CAN 40 28 ( 56 38 8 72 48 H 88 58 X 104 68
h 120 78 x

909 HT 25 19 EM 4129) 57399 73491 89 59 Y 105 69

i 121 79 vy

10 OALF 26 1A SUB 42 2A* 58 3A: 74 4AJ 90 5A Z 106 6A
j 122 7A z

11 OB VT 27 1IBESC 43 2B+ 59 3B; 75 4B K 91 5B[ 107 6B
k 123 7B {

12 OCFF 28 1ICFS 44 2C, 603C< 76 4CL 92 5C\ 108 6C
| 124 7C |

13 0DCR 29 1IDGS 452D- 61 3D= 77 4DM 93 5D] 109 6D
m 125 7D}

14 OE SO 30 1IERS 46 2E. 62 3E > 78 4EN 94 5E ~ 110 6E
n 126 7E ~

15 OF SI 31 1IFUS 47 2F/ 63 3F? 79 4F O 95 5F _ 111 6F
o 127 7F DEL

This screenis carefully designed to fit in 23 rows and 79 columns, so that it will fit in a 24x80
terminal window.

This table could be generated at runtime, on the fly. Grinding out the decimal and hex columns would
be easy enough. But between wrapping the table at the right places and knowing when to print
mnemonics like NUL rather than characters, there would have been enough odd corner cases to make
the code distinctly unpleasant. Furthermore, the columns had to be unevenly spaced to make the table
fit in 79 columns. But any Unix programmer would reflexively expressit as ablock of data before
finding out these things.

The most naive way to generate the usage screen would have been to put each line into a C initializer
intheasci i . ¢ source code, and then have all lines be written out by code that steps through the
initializer. The problem with this method is that the extra datain the C initializer format (trailing
newline, string quotes, comma) would make the lines longer than 79 characters, causing them to wrap
and making it rather difficult to map the appearance of the code to the appearance of the output. This,
in turn, would make the display difficult to edit, which was annoying when | wastinkering it to fitin
24x80 screen cells.

A more sophisticated method using the string-pasting behavior of the ANSI C preprocessor collided
with avariant of the same problem. Essentially, any way of inlining the usage screen explicitly would

involve punctuation at start and end of line that there's no room for.[%] And copying the table to the
screen from afile at runtime seemed like afragile expedient; after all, the file could get lost.

Here's the solution. The source distribution contains afile that just contains the usage screen, exactly
as listed above and named spl ashscr een. The C source contains the following function:

voi d



showHel p( FI LE *out, char *prognane)

{

fprintf(out,"Usage: % [-dxohv] [-t] [char-alias...]\n",
prognane) ;
#i ncl ude "spl ashscreen. h"

exit(0);
}

And spl ashscr een. h isgenerated by a makefile production:

spl ashscreen. h: spl ashscreen
sed <spl ashscreen >spl ashscreen. h \
-e "s/\\/\\\\/g'" -e "s/"/\\"/" -e "s/.*puts("&");/"

So when the program is built, the spl ashscr een fileis automatically massaged into a series of
output function calls, which are then included by the C preprocessor in the right function.

By generating the code from data, we get to keep the editable version of the usage screen identical to
its display appearance. This promotes transparency. Furthermore, we could modify the usage screen
at will without touching the C code at all, and the right thing would automatically happen on the next
build.

For similar reasons, the initializer that holds the name synonym strings is also generated via a sed
script in the makefile, from afile called nanet abl e inthe ascii source distribution. Most of

nanmet abl e issmply copied into the C initializer. But the generation process would make it easy to
adapt thistool for other 8-bit character sets such as the | SO-8859 series (Latin-1 and friends).

Thisisan amost trivial example, but it neverthelessillustrates the advantages of even simple and ad-
hoc code generation. Similar techniques could be applied to larger programs with correspondingly
greater benefits.

Case Study: Generating HTML Code for a Tabular List

L et's suppose that we want to put a page of tabular data on a Web page. We want the first few linesto
look like Example 9.6.

Example 9.6. Desired output format for the star table.

Aal at Davi d Weber The Armageddon | nheritance
Ael nos Al an Dean Foster The Man who Used the Universe
Aedr yr Steve M Il er/Sharon Lee Scout's Progress

Aer gi st al Gerard Klein The Overl ords of War

Af di ar L. Neil Smth Tom Pai ne Maru



Agandar Donal d Ki ngsbury Psychohi storical Crisis
Aghi rnam rr Jo C ayton Shadowki | |

The thick-as-a-plank way to handle this would be to hand-write HTML table code for the desired
appearance. Then, each time we want to add a name, we'd have to hand-write another set of <tr> and
<td> tags for the entry. Thiswould get very tedious very quickly. But what's worse, changing the
format of the list would require hand-hacking every entry.

The superficially clever way to handle this would be to make this data a three-column relation in a

database, then use some fancy CGI [ techni gue or a database-capable templating engine like PHP to
generate the page on the fly. But suppose we know that the list will not change very often, don't want
to run a database server just to be able to display thislist, and don't want to load the server with
unnecessary CGl traffic?

There's a better solution. We put the datain atabular flat-file format like Example 9.7.

Example 9.7. Master form of the star table.

Aal at - Davi d Weber - The Arnmageddon

| nheritance

Ael nos : Al an Dean Foster : The Man who Used the
Uni ver se

Aedryr :Steve M1l er/Sharon Lee : Scout's Progress

Aer gi st al :CGerard Klein : The Overlords of War

Af di ar L. Neil Smth : Tom Pai ne Maru

Agandar : Donal d Ki ngsbury : Psychohi storical Crisis
Aghi rnamrr :Jo C ayton : Shadowki | |

We could in a pinch have done without the explicit colon field delimiters, using the pattern consisting
of two or more spaces as a delimiter, but the explicit delimiter protects us in case we press spacebar
twice while editing afield value and fail to noticeit.

We then write a script in shell, Perl, Python, or Tcl that massages thisfileinto an HTML table, and
run that each time we add an entry. The old-school Unix way would revolve around the following
nigh-unreadable sed(1) invocation

sed -e 's, M, <tr><td>,"' -e 's,$, </td></tr>"' -e 's,:,</[td><td> ¢

or this perhaps slightly more scrutable awk(1) program:

awk -F. "{printf("<tr><td>%s</td><td>%</td><td>%s</td></tr>\n", \



$1, $2, $3)}°

(If either of these examples interests but mystifies, read the documentation for sed(1) or awk(1). We
explained in Chapter 8 that the latter has largely fallen out of use. The former is still an important
Unix tool that we haven't examined in detail because (@) Unix programmers already know it, and (b)
it's easy for non-Unix programmers to pick up from the manual page once they grasp the basic ideas
about pipelines and redirection.)

A new-school solution might center on this Python code, or on equivalent Perl:

for rowin map(lanbda x:x.rstrip().split(':"),sys.stdin.readlines

()):

print "<tr><td>" + "</td><td>".join(row) + "</td></tr>"

These scripts took about five minutes each to write and debug, certainly less time than would have
been required to either hand-hack theinitial HTML or create and verify the database. The
combination of the table and this code will be much simpler to maintain than either the under-
engineered hand-hacked HTML or the over-engineered database.

A further advantage of this way of solving the problem is that the master file stays easy to search and
modify with an ordinary text editor. Another isthat we can experiment with different table-to-HTML
transformations by tweaking the generator script, or easily make a subset of the report by putting a
grep(2) filter beforeit.

| actually use this technique to maintain the Web page that lists fetchmail test sites; the example
above is science-fictional only because publishing the real data would reveal account usernames and
passwords.

Thiswas a somewhat less trivial example than the previous one. What we've actually designed hereis
a separation between content and formatting, with the generator script acting as a stylesheet. (Thisis
yet another mechanism-vs.-policy separation.)

Thelesson in all these casesis the same. Do as little work as possible. Let the data shape the code.

L ean on your tools. Separate mechanism from policy. Expert Unix programmers learn to see
possibilities like these quickly and automatically. Constructive laziness is one of the cardinal virtues
of the master programmer.

[ Seri pting languages tend to solve this problem more elegantly than C does. Investigate the shell's
here documents and Python's triple-quote construct to find out how.



[ Here, CGl refers not to Computer Graphic Inagery but to the Common Gateway Interface used
for live Web content.
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Chapter 10. Configuration

Starting on the Right Foot
Table of Contents
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Case Study: fetchmail
Case Study: The XFree86 Server
On Breaking These Rules

Let us watch well our beginnings, and results will manage themsel ves.
-- Alexander Clark

Under Unix, programs can communicate with their environment in arich variety of ways. It's
convenient to divide these into (a) startup-environment queries and (b) interactive channels. In this
chapter, we'll focus primarily on startup-environment queries. The next chapter will discuss
Interactive channels.
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What Should Be Configurable?

Before plunging into the details of different kinds of program configuration, we should ask a high-
level question: What things should be configurable?

The gut-level Unix answer is “everything”. The Rule of Separation that we discussed in Chapter 1

encourages Unix programmers to build mechanism and defer policy decisions outward toward the
user wherever possible. While this tends to produce programs that are powerful and rewarding for
expert users, it also tends to produce interfaces that overwhelm novices and casual users with a surfeit
of choices, and with configuration files sprouting like weeds.

Unix programmers aren't going to be cured of their tendency to design for their peers and the most
sophisticated users any time soon (we'll grapple a bit with the question of whether such a change
would actually be desirable in Chapter 20). So it's perhaps more useful to invert the question and ask

“What things should not be configurable?’ Unix practice does offer some guidelines on this.

First, don't provide configuration switches for what you can reliably detect automatically. Thisisa
surprisingly common mistake. Instead, look for ways to eliminate configuration switches by
autodetection, or by trying aternative methods at runtime until one succeeds. If this strikes you as
inelegant or too expensive, ask yourself if you haven't fallen into premature optimization.

One of the nicest examples of autodetection | experienced was when Dennis
Ritchie and | were porting Unix to the Interdata 8/32. This was a big-endian
machine, and we had to generate data for that machine on a PDP-11, write a
magnetic tape, and then load the magnetic tape on the Interdata. A common error
was to forget to twiddle the byte order; a checksum error showed you that you
had to unmount, remount again on the PDP-11, regenerate the tape, unmount,
and remount. Then one day Dennis hacked the I nterdata tape reader program so
that if it got a checksum error it rewound the tape, toggled ‘ byte flip’ switch and
reread it. A second checksum error would kill the load, but 99% of the time it
just read the tape and did the right thing. Our productivity shot up, and we pretty
much ignored tape byte order from that point on.

-- Steve Johnson

A good rule of thumb isthis: Be adaptive unless doing so costs you 0.7 seconds or more of latency.
0.7 seconds is a magic number because, as Jef Raskin discovered while designing the Canon Cat,
humans are almost incapable of noticing startup latency shorter than that; it gets lost in the mental
overhead of changing the focus of attention.

Second, users should not see optimization switches. As adesigner, it's your job to make the program
run economically, not the user's. The marginal gainsin performance that a user might collect from



optimization switches are usually not worth the interface-complexity cost.

File-format nonsense (record length, blocking factor, etc) was blessedly
eschewed by Unix, but the same kind of thing has roared back in excess
configuration goo. KISS became MICAHI: make it complicated and hideit.

-- Doug Mcllroy

Finally, don't do with a configuration switch what can be done with a script wrapper or atrivial
pipeline. Don't put complexity inside your program when you can easily enlist other programs to help
get the work done. (Recall our discussion in Chapter 7 of why Is(1) does not have a built-in pager, or
an option to invoke it).

Here are some more general questions to consider whenever you find yourself thinking about adding
a configuration option:

. Can|l leavethisfeature out? Why am | fattening the manual and burdening the user?

« Could the program’s normal behavior be changed in an innocuous way that would make the
option unnecessary?

. Isthis option merely cosmetic? Should | be thinking less about how to make the user interface
configurable and more about how to make it right?

« Should the behavior enabled by this option be a separate program instead?

Proliferating unnecessary options has many bad effects. One of the subtlest but most serious iswhat it
will do to your test coverage.

Unlessit is done very carefully, the addition of an on/off configuration option
can lead to a need to double the amount of testing. Since in practice one never
does double the amount of testing, the practical effect isto reduce the amount of
testing that any given configuration receives. Ten options leads to 1024 times as
much testing, and pretty soon you are talking real reliability problems.

-- Steve Johnson
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Where Configurations Live

Classically, a Unix program can look for control information in five placesin its startup-time
environment:

« Run-control filesunder / et ¢ (or at fixed location elsewhere in systemland).
. System-set environment variables.

« Run-control files (or ‘dotfiles’) in the user's home directory. (See Chapter 3 for a discussion of
thisimportant concept, if it isunfamiliar.)

« User-set environment variables,

. Switches and arguments passed to the program on the command line that invoked it.

These queries are usually done in the order listed above. That way, later (more local) settings
override earlier (more global) ones. Settings found earlier can help the program compute locations for
later retrievals of configuration data.

When thinking about which mechanism to use to pass configuration data to a program, bear in mind
that good Unix practice demands using whichever one most closely matches the expected lifetime of
the preference. Thus: for preferences which are very likely to change between invocations, use
command-line switches. For preferences which change seldom, but that should be under individual
user control, use arun-control file in the user's home directory. For preference information that needs
to be set site-wide by a system administrator and not changed by users, use arun-control filein
system space.

WEe'll discuss each of these places in more detail, then examine some case studies.
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Run-Control Files

A run-control fileisafile of declarations or commands associated with a program that it interprets on
startup. If a program has site-specific configuration shared by all users at asite, it will often have a
run-control file under the/ et ¢ directory. (Some Unixes havean/ et ¢/ conf subdirectory that
collects such data.)

User-specific configuration information is often carried in a hidden run-control file in the user's home
directory. Such files are often called * dotfiles' because they exploit the Unix convention that a

filename beginning with adot is normally invisible to directory-listing tools1%

Programs can also have run-control or dot directories. These group together several configuration
filesthat are related to the program, but that are most conveniently treated separately (perhaps
because they relate to different subsystems of the program, or have differing syntaxes).

Whether file or directory, convention now dictates that the location of the run-control information has
the same basename as the executable that readsit. An older convention still common among system

programs uses the executable's name with the suffix ‘rc¢’ for ‘run control’ 1100 Thus, if you write a
program called ‘ seekstuff’ that has both site-wide and user-specific configuration, an experienced
Unix user would expect to find the former at / et ¢/ seekst uf f andthelatter at . seekst uff in
the user's home directory; but it would be unsurprising if the locationswere/ et ¢/ seekstuffrc
and . seekst uf f r c, especialy if seekstuff were a system utility of some sort.

In Chapter 5 we described a somewhat different set of design rules for textual data-file formats, and

discussed how to optimize for different weightings of interoperability, transparency and transaction
economy. Run-control files are typically only read once at program startup and not written; economy
Istherefore usually not amajor concern. Interoperability and transparency both push us toward
textual formats designed to be read by human beings and modified with an ordinary text editor.

While the semantics of run-control files are of course completely program dependent, there are some
design rules about run-control syntax that are widely observed. We'll describe those next; but first
we'll describe an important exception.

If the program is an interpreter for alanguage, then it is expected to be ssimply afile of commandsin
the syntax of that language, to be executed at startup. Thisis an important rule, because Unix
tradition strongly encourages the design of all kinds of programs as special-purpose languages and
minilanguages. Well-known examples with dotfiles of this kind include the various Unix command
shells and the Emacs programmabl e editor.

(Onereason for this design rule is the belief that special cases are bad news — thus, that any switch



that changes the behavior of alanguage should be settable from within the language. If as alanguage
designer you find that you cannot express all the startup settings of alanguage in the the language
itself, a Unix programmer would say you have a design problem — which is what you should be
fixing, rather than devising a special-case run-control syntax.)

This exception aside, here are the normal style rules for run-control syntaxes. Historically, they are
patterned on the syntax of Unix shells:

1.

Support explanatory comments, and lead them with #. The syntax should also ignore
whitespace before #, so that comments on the same line as configuration directives are
supported.

Don't make insidious whitespace distinctions. That is, treat runs of spaces and tabs,
syntactically the same as a single space. If your directive format is line-oriented, it is good
form to ignore trailing spaces and tabs on lines. The metarule is that the interpretation of the
file should not depend on distinctions a human eye can't see.

Treat multiple blank lines and comment lines as a single blank line. If the input format uses
blank lines as separators between records, you probably want to ensure that acomment line
does not end a record.

Lexically treat the file as a simple sequence of whitespace-separated tokens, or lines of tokens.
Complicated lexical rules are hard to learn, hard to remember, and hard for humans to parse.
Avoid them.

But, support a string syntax for tokens with embedded whitespace. Use single quote or double
guote as balanced delimiters. If you support both, beware of giving them different semantics
asthey havein shell; thisis a well-known source of confusion.

Support a backslash syntax for embedding unprintable and special charactersin strings. The
standard pattern for thisis the backslash-escape syntax supported by C compilers. Thus, for
example, it would be quite surprising if the string " a\ t b" were not interpreted as a character
‘a, followed by atab, followed by the character ‘b'.

Some aspects of shell syntax, on the other hand, should not be emulated in run-control syntaxes — at
least not without a good and specific reason. The shell's baroque quoting and bracketing rules, and its
special metacharacters for wildcards and variable substitution, both fall into this category.

It bears repeating that the point of these conventions is to reduce the amount of novelty that users
have to cope with when they read and edit the run-control file for a program they have never seen
before. Therefore, if you have to break the conventions, try to do so in away that makesit visually
obvious that you have done so, document your syntax with particular care, and (most importantly)
design it so it's easy to pick up by example.

These standard style rules only describe conventions about tokenizing and comments. The names of



run-control files, their higher-level syntax, and the semantic interpretation of the syntax are usually
application-specific. There are avery few exceptions to this rule, however; oneis dotfiles which have
become ‘well-known’ in the sense that they routinely carry information used by a whole class of
applications. Sharing run-control file formats in this way reduces the amount of novelty users haveto
cope with.

Of these, probably the best established isthe . net r ¢ file. Internet client programs that must track
host/password pairs for a user can usualy get them fromthe. net r ¢ file, if it exists.

Case Study: The . netrc File

The. net r c fileisagood example of the standard rulesin action. An example, with the passwords
changed to protect the innocent, isin Example 10.1.

Example 10.1. A . net r c example.

# FTP access to nmy Wb host
machi ne uni x1. net axs. com

| ogi n esr

password joesatri ani

# My main mail server at Netaxs
machi ne | map. net axs. com

| ogi n esr

password | ef f beck

# Auxiliary | MAP nmaildrop at CClL
machi ne i map.ccil.org

| ogi n esr

password marcbonill a

# Auxiliary POP maildrop at CClIL
machi ne pop3.ccil.org

| ogi n esr

password ericjohnson

# Shell account at CCIL
machi ne | ocke.ccil.org
| ogi n esr
password stevenorse

Observe that thisformat is easy to parse by eyeball even if you've never seen it before; it's a set of
machine/login/password triples, each of which describes an account on aremote host. This kind of
transparency is important — much more important, actually, than the time economy of faster
Interpretation or the space economy of a more compact and cryptic file format. It economizes the far



more valuable resource that is human time, by making it likely that a human being will be able to
read and modify the format without having to read a manual or use atool less familiar than aplain
old text editor.

Observe aso that this format is used to supply information for multiple services — an advantage,
because it means sensitive password information need only be stored in one place. The. netrc
format was designed for the original Unix FTP client program. It's used by all FTP clients, and also
understood by some telnet clients, and by the smbclient(1) command-line tool, and by the fetchmail
program. If you are writing an Internet client that must do password authentication through remote
logins, the Rule of Least Surprise demands that it use the contents of . net r ¢ as defaults.

Portability to Other Operating Systems

Systemwide run-control files are a design tactic that can be used on almost any operating system, but
dotfiles are rather more difficult to map to a non-Unix environment. The critical thing missing from
most non-Unix operating systems is true multiuser capability and the notion of a per-user home
directory. DOS and Windows versions up to ME (including 95 and 98), for example, completely lack
any such notion; all configuration information has to be stored either in systemwide run-control files
at afixed location, the Windows registry, or configuration files in the same directory a program isrun
from. Windows NT has some notion of per-user home directories (which made its way into Windows
2000 and XP), but it isonly poorly supported by the system tools.

[2%% To make dotfiles visible, use the - a option of Is(1).

9% The ‘re’ suffix goes back to Unix's grandparent, CTSS. It had a command-script feature called
“runcom”. Early Unixes used ‘rc’ for the name of the operating system's boot script, as a tribute to
CTSS runcom.
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Environment Variables

When a Unix program starts up, the environment accessible to it includes a set of name to value
associations (names and values are both strings). Some of these are set manually by the user; others
are set by the system at login time, or by your shell or terminal emulator (if you're running one).
Under Unix, environment variables tend to carry information about file search paths, system defaults,
the current user 1D and process number, and other key bits of information about the runtime
einvironment of programs. At a shell prompt, typing set followed by anewline will list al currently
defined shell variables,

In C and C++ these values can be queried with the library function getenv(3). Perl and Python
initialize environment-dictionary objects at startup. Other languages generally follow one of these
two models.

System Environment Variables

There are a number of well-known environment variables you can expect to find defined on startup of
a program from the Unix shell. These (especialy HOVE) will often need to be evaluated before you
read alocal dotfile.

USER
Login name of the account under which this session islogged in (BSD convention).
L OGNAVE
Login name of the account under which this session islogged in (System V convention).
HOVE
Home directory of the user running this session.
COLUMNS

The number of character-cell columns on the controlling terminal or terminal-emul ator
window.

LI NES

The number of character-cell rows on the controlling terminal or terminal-emulator window.



SHELL
The name of the user's command shell (often used by shellout commands).
PATH

Thelist of directories that the shell searches when looking for executable commands to match
aname.

TERM

Name of the terminal type of the session console or terminal emulator window (see the
terminfo case study in Chapter 6 for background). TERM is special in that programs to create
remote sessions over the network (such as telnet and ssh) are expected to passit through and
set it in the remote session.

(Thislist isrepresentative, but not exhaustive.)

The HOVE variable is especially important, because many programs use it to find the calling user's
dotfiles (others call some functionsin the C runtime library to get the calling user's home directory).

Note that some or all of these system environment variables may not be set when a program is started
by some other method than a shell spawn. In particular, daemon listeners on a TCP/IP socket often
don't have these variables set — and if they do, the values are unlikely to be useful.

Finally, note that there is atradition (exemplified by the PATH variable) of using acolon asa
separator when an environment variable must contain multiple fields, especially when the fields can
be interpreted as a search path of some sort. Note that some shells (notably bash and ksh) always
interpret colon-separated fields in an environment variable as filenames, which meansin particular
that they expand ~ in these fields to the user's home directory.

User Environment Variables

Although applications are free to interpret environment variables outside the system-defined set, it is
nowadays fairly unusual to actually do so. Environment values are not really suitable for passing
structured information into a program (though it can in principle be done via parsing of the values).
Instead, modern Unix applications tend to use run-control files and dotfiles.

There are, however, some design patterns in which user-defined environment variables can be useful:

Application-independent preferences that need to be shared by a large number of different programs.
This set of ‘standard’ preferences changes only slowly, because lots of different programs need to

recognize each one before it becomes useful 2%] Here are the standard ones:



EDI TOR

The name of the user's preferred editor (often used by shellout commands).[@]
MAI LER

The name of the user's preferred mail user agent (often used by shellout commands).
PAGER

The name of the user's preferred program for browsing plaintext.
BROWSER

The name of the user's preferred program for browsing Web URLSs. Thisone, as of 2003, is
still very new and not yet widely implemented.

When to Use Environment Variables

What both user and system environment variables have in common is that it would be annoying to
have to replicate the information they contain in alarge number of application run-control files, and
extremely annoying to have to change that information everywhere when your preference changes.
Typicaly, the user sets these variablesin his or her shell session startup file.

A value varies across several contexts that share dotfiles, or a parent needs to pass information to
multiple child processes. Some pieces of start-up information are expected to vary across several
contexts in which the calling user would share common run-control files and dotfiles. For a system-
level example, consider several shell sessions open through terminal emulator windows on an X
desktop. They will all see the same dotfiles, but might have different values of COLUMNS, LI NES,
and TERM (Old-school shell programming used this method extensively; makefiles still do.)

A value varies too often for dotfiles, but doesn't change on every startup. A user-defined environment
variable may (for example) be used to pass afile system or Internet location that is the root of atree
of files that the program should play with. The CVS version-control system interprets the variable
CVSROOT thisway, for example. Several newsreader clients that fetch news from servers using the
NNTP protocol interpret the variable NNTPSERVER as the location of the server to query.

A process-unique override needs to be expressed in a way that doesn't require the command-line
invocation to be changed. A user-defined environment variable can be useful for situations in which,
for whatever reason, it would be inconvenient to have to change an application dotfile or supply
command-line options (perhaps it is expected that the application will normally be used inside a shell
wrapper or within amakefile). A particularly important context for this sort of use is debugging.
Under Linux, for example, manipulating the variable LD LI BRARY _PATH associated with the |d(1)
linking loader enables you to change where libraries are loaded from — perhaps to pick up versions
that do buffer-overflow checking or profiling.



In general, a user-defined environment variable can be an effective design choice when the value
changes often enough to make editing a dotfile each time inconvenient, but not necessarily every time
(so always setting the location with a command-line option would also be inconvenient). Such
variables should typically be evaluated after alocal dotfile and be permitted to override settingsin it.

Thereisonetraditional Unix design pattern that we do not recommend for new programs.
Sometimes, user-set environment variables are used as a lightweight substitute for expressing a
program preference in arun-control file. The venerable nethack(1) dungeon-crawling game, for
example, reads a NETHACKOPTI ONS environment variable for user preferences. Thisis an old-
school technique; modern practice would lean toward parsing them from a. net hack or .

net hackr c run-control file.

The problem with the older style isthat it makes tracking where your preference information lives
more difficult than it would be if you knew the program had a run-control file under your home
directory. Environment variables can be set anywhere in several different shell run-control files—
under Linux these arelikely toinclude. profil e,. bash_profil e,and. bashrc at least.
These files are cluttered and fragile things, so as the code overhead of having an option-parser has
come to seem less significant preference information has tended to migrate out of environment
variablesinto dotfiles.

Portability to Other Operating Systems

Environment variables have only very limited portability off Unix. Microsoft operating systems have
an environment-variable feature modeled on that of Unix, and use a PATH variable as Unix doesto
set the binary search path, but most of other variables that Unix shell programmerstake for granted
(such as process ID or current working directory) are not supported. Other operating systems
(including classic MacOS) generally do not have any local equivalent of environment variables.

(192 Nobody knows areally graceful way to represent this sort of distributed preference data;
environment variables probably are not it, but al the known alternatives have equally nasty problems.

1199 Actually, most Unix programs first check VI SUAL, and only if that's not set will they consult
EDI TOR. That's arelic from the days when people had different preferences for line-oriented editors
and visual editors.
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Command-Line Options

Unix tradition encourages the use of command-line switches to control programs, so that options can
be specified from scripts. Thisis especially important for programs that function as pipes or filters.
Three conventions for how to distinguish command-line options from ordinary arguments exist; the
origina Unix style, the GNU style, and the X toolkit style.

In the original Unix tradition, command-line options are single | etters preceded by a single hyphen.
Mode-flag options that do not take following arguments can be ganged together; thus, if - a and - b
are mode options, - ab or - ba is also correct and enables both. The argument to an option, if any,
followsit (optionally separated by whitespace). In this style, lowercase options are preferred to
uppercase. When you use uppercase options, it's good form for them to be special variants of the
lowercase option.

The original Unix style evolved on slow ASR-33 teletypes that made terseness a virtue; thus the
single-letter options. Holding down the shift key required actual effort; thus the preference for lower
case, and the use of “-” (rather than the perhaps more logical “+”) to enable options.

The GNU style uses option keywords (rather than keyword letters) preceded by two hyphens. It
evolved years later when some of the rather elaborate GNU utilities began to run out of single-letter
option keys (this constituted a patch for the symptom, not a cure for the underlying disease). It
remains popular because GNU options are easier to read than the al phabet soup of older styles. GNU-
style options cannot be ganged together without separating whitespace. An option argument (if any)
can be separated by either whitespace or asingle “=" (equal sign) character.

The GNU double-hyphen option leader was chosen so that traditional single-letter options and GNU-
style keyword options could be unambiguously mixed on the same command line. Thus, if your
initial design has few and simple options, you can use the Unix style without worrying about causing
an incompatible ‘flag day’ if you need to switch to GNU style later on. On the other hand, if you are
using the GNU style, it is good practice to support single-letter equivaents for at least the most
common options.

The X toolkit style, confusingly, uses a single hyphen and keyword options. It isinterpreted by X
toolkits that filter out and process certain options (such as- geonet ry and - di spl ay) before
handing the filtered command line to the application logic for interpretation. The X toolkit style is not
properly compatible with either the classic Unix or GNU styles, and should not be used in new
programs unless the value of being compatible with older X conventions seems very high.

Many tools accept a bare hyphen, not associated with any option |etter, as a pseudo-filename
directing the application to read from standard input. It is also conventional to recognize a double
hyphen as a signal to stop option interpretation and treat all following arguments literally.



Most Unix programming languages offer libraries that will parse acommand line for you in either
classic-Unix or GNU style (interpreting the double-hyphen convention as well).

The -ato -z of Command-Line Options

Over time, frequently-used options in well-known Unix programs have established aloose sort of
semantic standard for what various flags might be expected to mean. The following isalist of options
and meanings that should prove usefully unsurprising to an experienced Unix user:

-a

All (without argument). If thereisa GNU-style- - al | option, for - a to be anything but a
synonym for it would be quite surprising. Examples:. fuser(1), fetchmail (1).

Append, asin tar(1). Thisis often paired with - d for delete.

Buffer or block size (with argument). Set a critical buffer size, or (in a program having to do
with archiving or managing storage media) set a block size. Examples: du(l), df(1), tar(1).

Batch. If the program is naturally interactive, - b may be used to suppress prompts or set other
options appropriate to accepting input from afile rather than a human operator. Example: flex

(2).

Command (with argument). If the program is an interpreter that normally takes commands
from standard input, it is expected that the option of a- ¢ argument will be passed to it asa
single line of input. This convention is particularly strong for shells and shell-like interpreters.
Examples: sh(1), ash(1), bsh(1), ksh(1), python(1). Compare - e below.

Check (without argument). Check the correctness of the file argument(s) to the command, but
don't actually perform normal processing. Frequently used as a syntax-check option by
programs that do interpretation of command files. Examples: getty(1), perl(1).

Debug (with or without argument). Set the level of debugging messages. Thisoneisvery
common.

Occasionally - d has the sense of ‘delete’ or ‘directory’.



Define (with argument). Set the value of some symbol in an interpreter, compiler, or
(especially) macro-processor-like application. The model is the use of - D by the C compiler's
macro preprocessor. Thisis a strong association for most Unix programmers; don't try to fight
it.

Execute (with argument). Programs that are wrappers, or that can be used as wrappers, often
allow - e to set the program they hand off control to. Examples: xterm(1), perl(1).

Edit. A program that can open aresource in either aread-only or editable mode may allow - e
to specify opening in the editable mode. Examples. crontab(1), and the get(1) utility of the
SCCS version-control system.

Occasionally - e hasthe sense of ‘exclude’ or ‘expression’.

File (with argument). Very often used with an argument to specify an input (or, less
frequently, output) file for programs that need to randomly access their input or output (so that
redirection via< or > won't suffice). The classic exampleistar(1); others abound. It isalso
used to indicate that arguments normally taken from the command line should be taken from a
file instead; see awk(1) and egrep(1) for classic examples. Compare - 0 below; often, - f is
the input-side analog of - o.

Force (typically without argument). Force some operation (such as afile lock or unlock) that
iIsnormally performed conditionally. Thisis less common.

Daemons often use- f inaway that combines these two meanings, to force processing of a
configuration file from a nondefault location. Examples: ssh(1), httpd(1), and many other
daemons.

Headers (typically without argument). Enable, suppress, or modify headers on atabular report
generated by the program. Examples: pr(1), ps(1).

Help. Thisis actually less common than one might expect offhand — for much of Unix's early
history developers tended to think of on-line help as memory-footprint overhead they couldn't
afford. Instead they wrote manual pages (this shaped the man-page style in ways wel'll discuss

in Chapter 18).



Initialize (usually without argument). Set some critical resource or database associated with
the program to an initial or empty state. Example: ci(1) in RCS.

Interactive (usually without argument). Force a program that does not normally query for
confirmation to do so. There are classical examples (rm(1), mv(1)) but this use is not common.

Include (with argument). Add afile or directory name to those searched for resources by the
application. All Unix compilers with any equivalent of source-file inclusion in their languages
use- | inthissense. It would be extremely surprising to see this option letter used in any other

way.

Keep (without argument). Suppress the normal deletion of some file, message, or resource.
Examples: passwd(1), bzip(1), and fetchmail(1).

Occasionally - k hasthe sense of ‘kill’.

List (without argument). If the program is an archiver or interpreter/player for some kind of
directory or archive format, it would be quite surprising for - I to do anything but request an
item listing. Examples: arc(1), binhex(1), unzip(1). (However, tar(1) and cpio(1) are
exceptions.)

In programs that are already report generators, - | almost invariably means “long” and
triggers some kind of long-format display revealing more detail than the default mode.
Examples: 15(1), ps(1).

Load (with argument). If the program isalinker or alanguage interpreter, - | invariably loads
alibrary, in some appropriate sense. Examples: gcc(1), f77(1), emacs(1).

Login. In programs such as rlogin(1) and ssh(1) that need to specify a network identity, - | is
how you do it.

Occasionally - | hasthe sense of ‘length’ or ‘lock’.

Message (with argument). Used with an argument, - mpasses it in as a message string for
some logging or announcement purpose. Examples: ci(1), cvs(l).

Occasionally - mhas the sense of ‘mail’, ‘mode’, or ‘modification-time'.



Number (with argument). Used, for example, for page number ranges in programs such as head
(1), tail(1), nroff(1), and troff(1). Some networking tools that normally display DNS names
accept - n as an option that causes them to display the raw |P addresses instead; ifconfig(1)

and tcpdump(1) are the archetypal examples.

Not (without argument). Used to suppress normal actions in programs such as make(1).

-0
Output (with argument). When a program needs to specify an output file or device by hame on
the command line, the - 0 option does it. Examples. as(1), cc(1), sort(1). On anything with a
compiler-like interface, it would be extremely surprising to see this option used in any other
way. Programs that support - o often (like gcc) have logic that allows it to be recognized after
ordinary arguments as well as before.

-P
Port (with argument). Especially used for options that specify TCP/IP port numbers.
Examples: cvs(1), the PostgreSQL tools, the smbclient(1), snmpd(1), ssh(1).
Protocol (with argument). Examples: fetchmail(1), snmpnetstat(1).

-q
Quiet (usually without argument). Suppress normal result or diagnostic output. Thisis very
common. Examples: ci(1), co(1), make(1). See also the ‘silent’ senseof - s.

-r (dso-R)
Recurse (without argument). If the program operates on a directory, then this option might tell
it to recurse on all subdirectories. Any other usein a utility that operated on directories would
be quite surprising. The classic exampleis, of course, cp(l).
Reverse (without argument). Examples: 1s(1), sort(1). A filter might use thisto reverse its
normal translation action (compare - d).

-S

Silent (without argument). Suppress normal diagnostic or result output (similar to - g; when
both are supported, g means ‘quiet’ but - s means ‘utterly silent’). Examples: csplit(1), ex(1),
fetchmail (1).



Subject (with argument). Always used with this meaning on commands that send or
manipulate mail or news messages. It is extremely important to support this, as programs that
send mail expect it. Examples: mail(1), elm(1), mutt(1).

Occasionally - s hasthe sense of ‘size’.

Tag (with argument). Name a location or give a string for a program to use as aretrieval key.
Especially used with text editors and viewers. Examples: cvs(1), ex(1), less(1), vi(1).

User (with argument). Specify a user, by name or numeric UID. Examples: crontab(1), emacs
(1), fetchmail(1), fuser(1), ps(1).

Verbose (with or without argument). Used to enabl e transaction-monitoring, more voluminous
listings, or debugging output. Examples: cat(1), cp(1), flex(1), tar(1), many others.

Version (without argument). Display program's version on standard output and exit.
Examples: cvs(1), chattr(1), patch(1), uucp(1). More usually this action isinvoked by - V.

Version (without argument). Display program's version on standard output and exit (often also
prints compiled-in configuration details as well). Examples. gcc(1), flex(1), hostname(1),
many others. It would be quite surprising for this switch to be used in any other way.

Width (with argument). Especially used for specifying widths in output formats. Examples:
faces(1), grops(1), od(1), pr(1), shar(1).

Warning (without argument). Enable warning diagnostics, or suppress them. Examples:
fetchmail(1), flex(1), nsgmis(1).

Enable debugging (with or without argument). Like - d. Examples: sh(1), uucp(l).

Extract (with argument). List filesto be extracted from an archive or working set. Examples:
tar(1), zip(1).



Y es (without argument). Authorize potentially destructive actions for which the program
would normally require confirmation. Examples: fsck(1), rz(1).

Enable compression (without argument). Archiving and backup programs often use this.
Examples: bzip(1), GNU tar(1), zcat(1), zip(1), cvs(1).

The preceding examples are taken from the Linux tool set, but should be good on most modern
Unixes.

When you're choosing command-line option letters for your program, look at the manual pages for
similar tools. Try to use the same option letters they use for the analogous functions of your program.
Note that some particular application areas that have particularly strong conventions about command-
line switches which you violate at your peril — compilers, mailers, text filters, network utilities and
X software are al notable for this. Anybody who wrote amail agent that used - s as anything but a
Subject switch, for example, would have scorn rightly heaped upon the choice.

The GNU project recommends conventional meanings for afew double-dash options in the GNU

coding standards[*®¥ It also lists long options which, though not standardized, are used in many
GNU programs. If you are using GNU-style options, and some option you need has afunction similar
to one of those listed, by all means obey the Rule of Least Surprise and reuse the name.

Portability to Other Operating Systems

To have command-line options, you have to have acommand line. The MS-DOS family does, of
course, though in Windowsiit's hidden by a GUI and its use is discouraged; the fact that the option
character isnormally */ ’ rather than ‘-’ ismerely adetail. MacOS classic and other pure GUI
environments have no close equivalent of command-line options.

[1% see the Gnu Codi ng Standards.
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How to Choose among the Methods

We've looked in turn at system and user run-control files, at environment variables, and at command-
line arguments. Observe the progression from least easily changed to most easily changed. Thereisa
strong convention that well-behaved Unix programs that use more than one of these places should
look at them in the order given, allowing later settings to override earlier ones (there are specific
exceptions, such as command-line options that specify where a dotfile should be found).

In particular, environment settings usually override dotfile settings, but can be overridden by
command-line options. It is good practice to provide a command-line option like the - e of make(1)
that can override environment settings or declarations in run-control files; that way the program can
be scripted with well-defined behavior regardless of the way the run-control files ook or
environment variables are set.

Which of these places you choose to look at depends on how much persistent configuration state your
program needs to keep around between invocations. Programs designed mainly to be used in a batch
mode (as generators or filtersin pipelines, for example) are usually completely configured with
command-line options. Good examples of this pattern include Is(1), grep(1) and sort(1). At the other
extreme, large programs with complicated interactive behavior may rely entirely on run-control files
and environment variables, and normal use involves few command-line options or none at all. Most
X window managers are a good example of this pattern.

(Unix has the capability for the same file to have multiple names or ‘links'. At startup time, every
program has available to it the filename through which it was called. One other way to signal to a
program that has several modes of operation which one it should come up inisto giveit alink for
each mode, have it find out which link it was called through, and change its behavior accordingly.
But this technique is generally considered unclean and seldom used.)

Let'slook at a couple of programs that gather configuration data from all three places. It will be
instructive to consider why, for each given piece of configuration data, it is collected asit is.

Case Study: fetchmail

The fetchmail program uses only two environment variables, USER and HOVE. These variables arein
the predefined set initialized by the system; many programs use them.

The value of HOVE is used to find the dotfile . f et chmmai | r ¢, which contains configuration
information in afairly elaborate syntax obeying the shell-like lexical rules described above. Thisis
appropriate because, once it has been initially set up, Fetchmail's configuration will change only
infrequently.



Thereisneitheran/ et c/ f et chmai | r ¢ nor any other systemwide file specific to fetchmail.
Normally such files hold configuration that's not specific to an individual user. fetchmail does use a
small set of properties with this kind of scope — specifically, the name of the local postmaster, and a
few switches and values describing the local mail transport setup (such as the port number of the
local SMTP listener). In practice, however, these are seldom changed from their compiled-in default
values. When they are changed, they tend to be modified in user-specific ways. Thus, there has been
no demand for a systemwide fetchmail run-control file.

Fetchmail can retrieve host/login/password triplesfrom a. net r c file. Thus, it gets authenticator
information in the least surprising way.

Fetchmail has an elaborate set of command-line options, which nearly but do not entirely replicate
what the . f et chmai | r ¢ can express. The set was not originally large, but grew over time as new
constructs were added to the . f et chmai | r ¢ minilanguage and parallel command-line options for
them were added more or lessreflexively.

The intent of supporting all these options was to make fetchmail easier to script by allowing usersto
override bits of its run control from the command line. But it turns out that outside of afew options
like--fetchall and--verbose thereislittle demand for this— and none that can't be satisfied
with a shellscript that creates atemporary run-control file on the fly and then feeds it to fetchmail
using the- f option.

Thus, most of the command-line options are never used, and in retrospect including them was
probably a mistake; they bulk up the fetchmail code a bit without accomplishing anything very useful.

If bulking up the code were the only problem, nobody would care, except for a
couple of maintainers. However, options increase the chances of error in code,
particularly due to unforeseen interactions among rarely used options. Worse,
they bulk up the manual, which is aburden on everybody.

-- Doug Mcllroy

Thereisalesson here; had | thought carefully enough about fetchmail's usage pattern and been alittle
less ad-hoc about adding features, the extra complexity might have been avoided.

An dternative way of dealing with such situations, which doesn't clutter up
either the code or the manual much, isto have a*“set option variable’ option,
such as the - Ooption of sendmail, which lets you specify an option name and
value, and sets that name to that value as if such a setting had been givenin a
configuration file. A more powerful variant of thisiswhat ssh doeswithits- o
option: the argument to - o istreated asif it were aline appended to the
configuration file, with the full config-file syntax available. Either of these
approaches gives people with unusual requirements away to override
configuration from the command line, without requiring you to provide a
separate option for each bit of configuration that might be overridden.

-- Henry Spencer



Case Study: The XFree86 Server

The X windowing system is the engine that supports bitmapped displays on Unix machines. Unix
applications running through a client machine with a bitmapped display get their input events through
X and send screen-painting requests to it. Confusingly, X ‘servers’ actually run on the client machine
— they exist to serve requests to interact with the client machine's display device. The applications
sending those requests to the X server are called ‘ X clients’, even though they may be running on a
server machine. And no, thereis no way to explain thisinverted terminology that is not confusing.

X servers have aforbiddingly complex interface to their environment. Thisis not surprising, as they
have to deal with awide range of complex hardware and user preferences. The environment queries
common to all X servers, documented on the X (1) and Xserver(1) pages, therefore make a useful
example for study. The implementation we examine here is X Free86, the X implementation used
under Linux and several other open-source Unixes.

At startup, the XFree86 server examines a systemwide run-control file; the exact pathname varies
between X builds on different platforms, but the basename is XF86Config. The XF86Config file has
ashell-like syntax as described above. Example 10.2 is a sample section of an XF86Config file.

Example 10.2. X configuration example.

# The 16-col or VGA server

Section "Screen"

Driver "vgal6"
Devi ce "CGeneric VGA"
Moni t or "LCD Panel 1024x768"
Subsection "D splay”
Modes "640x480" "800x600"

Vi ewPor t 00
EndSubsecti on
EndSecti on

The XF86Config file describes the host machine's display hardware (graphics card, monitor),
keyboard, and pointing device (mouse/trackball/glidepad). It's appropriate for thisinformation to live
in a systemwide run-control file, because it appliesto al users of the machine.

Once X has acquired its hardware configuration from the run control file, it uses the value of the

environment variable HOVE to find two dotfilesin the calling user's home directory. Thesefiles are .

Xdefaul ts and. xi ni t rc.[t%

The. Xdef aul t s file specifies per-user, application-specific resources relevant to X (trivial
examples of these might include font and foreground/background colors for aterminal emulator). The
phrase ‘relevant to X’ indicates a design problem, however. Collecting all these resource declarations



In one place is convenient for inspecting and editing them, but it is not always clear what should be
declared in. Xdef aul t s and what belongs in an application-specific dotfile. The . xi ni t r c file
specifies the commands that should be run to initialize the user's X desktop just after server startup.
These programs will almost always include awindow or session manager.

X servers have alarge set of command-line options. Some of these, such asthe - f p (font path)
option, override the XF86Config. Some are intended to help track server bugs, such asthe - audi t
option; if these are used at al, they are likely to vary quite frequently between test runs and are
therefore poor candidates to be included in arun-control file. A very important option is the one that
sets the server's display number. Multiple servers may run on a host provided each has a unique
display number, but all instances share the same run-control file(s); thus, the display number cannot
be derived solely from those files.

2% The. xi ni trc isand ogous to a Startup folder on Windows and other operating systems.
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On Breaking These Rules

The conventions described in this chapter are not absolute, but violating them will increase friction
costs for users and developers in the future. Break them if you must — but be sure you know exactly
why you are doing so before you do it. And if you do break them, make sure that attempts to do
things in conventional ways break noisily, giving proper error feedback in accordance with the Rule
of Repair.
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Chapter 11. Interfaces

User-Interface Design Patterns in the Unix Environment
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All our knowledge hasitsoriginsin our perceptions.

-- Leonardo Da Vinci

The interface of a program is the sum of all the ways that it communicates with human users and

other programs. In Chapter 10, we discussed the use of environment variables, switches, run-control

files and other parts of start-up-time interfaces. In this chapter, we'll untangle the history and explain
the